
Intro to Multithreading II

CS110L

February 23, 2022

Logistics

● Channels and event-driven programming content will be optional + use
recorded content (rather than live lectures)
○ Using three videos from 2021 posted on Canvas.

○ Optional extensions to project 2: use this material in your

implementation!

○ This is really good content! I highly recommend it, and I’m happy to talk

about it + answer questions now or after the quarter ends!

○ It’s definitely a bit beyond 110 material and the core goals of this class.

● This class is still relatively new; I appreciate your ongoing feedback so much,
and I’m adjusting based on it!

Logistics

● Plan:

○ Monday: scalability, availability, distributed systems, + project 2 intro

○ Wednesday 3/2: project 2 work / discussion

■ Or think of this as the “channels” lecture (and feel free to come talk +
ask questions about channels!)

○ Monday 3/7: project 2 work / discussion

■ Or think of this as the “event-driven programming” lecture (and feel

free to come talk + ask questions about event-driven programming)

● Note: project 2 is much more open-ended than project 1, so I recommend

working together + discussing your design decisions with others in the class!

Logistics

● Last class (March 9th): guest talk with Ryan Eberhardt

○ Mark your calendars!!!!!

○ Co-designed this course, taught 110, and has lots of experience

○ In person with joinable Zoom link

○ Come chat about how this stuff applies in the real world, what you’ve liked

+ disliked about the course, what you’ve learned, etc.!

■ and/or come to boost your participation grade :)

Review: Multithreading in Rust

Spawning + joining

● Syntax for spawning and joining threads in Rust is similar to in C++

Closure (lambda function in C++):

- What the thread will doSpawn the thread

Returns a thread object

https://doc.rust-lang.org/std/thread/

https://doc.rust-lang.org/std/thread/

Spawning + joining

● Syntax for spawning and joining threads in Rust is similar to in C++

`join` returns a Result

If the thread exited normally, this will be Ok

- Threads can return a value when they exit; that value will be stored in the Ok

If the thread panicked, this will be Err

- If some value was given to the panic (e.g., a string indicating an error

message), that value will be stored in the Err.

https://doc.rust-lang.org/std/thread/

https://doc.rust-lang.org/std/thread/

More on spawning

● A closure is the function that the thread runs

|| indicates to Rust that this is a closure

Note: closures are sometimes used as parameters to a function (ex: a custom ‘sum’
method), or defined and stored in a variable (you can store a closure object in a variable to

be invoked later). In these cases, the || will indicate general, required parameters to the
closure. If this doesn’t make sense, don’t worry about it! You won’t need it for this class.

More on spawning

● A closure is the function that the thread runs

● Like lambdas in C++, closures can “capture” their environments. This means

that a closure can use a variable that was defined outside of it.

○ Unlike in C++, capturing happens implicitly: if you use a variable, Rust will

assume you want to capture it.

Example: `i` is initialized in the main thread, then
used in the closure by the new, spawned thread.

https://docs.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=msvc-170

More on spawning

● When a closure captures a value, that value is borrowed (immutably) by default.

● That can lead to errors like this (from last class)

● why?

○ i is owned by the main thread. It has some lifetime in that thread.

○ i is borrowed by the spawned thread.

○ The Rust compiler can’t guarantee that’s ok: what if i is dropped — goes out of

scope — in the main thread before the spawned thread is done using it? That would
lead to the spawned thread using a reference that no longer refers to valid memory!

More on spawning

● To force a closure to take ownership, we use the move keyword.

● `Move` acts like the `=` operator:

○ If the value’s type is copy (primitive types like ints, booleans, etc.), a new
variable is created with a copy of the value.

○ Otherwise, the closure takes ownership of the value, and it can no longer
be accessed in the original thread.

■ For a refresher on copy vs. move, see these notes.

In this example from last time, `i` is an integer,
which is copy, so `move` gives each spawned
thread gets its own copy of `i`.

If `i` were a string, a vector, or some
other type that isn’t copy, this code
wouldn’t compile. Why?

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-04/

More on spawning

● To force a closure to take ownership, we use the move keyword.

● `Move` acts like the `=` operator:

○ If the value’s type is copy (primitive types like ints, booleans, etc.), a new
variable is created with a copy of the value.

○ Otherwise, the closure takes ownership of the value, and it can no longer
be accessed in the original thread.

■ For a refresher on copy vs. move, see these notes.

In this example from last time, `i` is an integer,
which is copy, so `move` gives each spawned
thread gets its own copy of `i`.

If `i` were a string, a vector, or some
other type that isn’t copy, this code
wouldn’t compile. Why?

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-04/

What if we want to share data?

● Let’s start with immutable data

● The problem: lifetimes

○ We’ve talked about how every value in Rust can only have one owner.

○ If we want to share data across threads, who should own the value?

○ Say that thread A owns X and thread B borrows X. What happens if A

exits before B does? (This is totally possible!)

● Solution: the Arc (atomically reference counted) type

● A way to “share ownership” across threads

● Arc::new: puts the value (here, an integer, 250) on the heap and gives it a reference count

(initially, 1). The returned value is an Arc that can be “dereferenced” like a pointer to the memory.

● Arc::clone increments the reference count and returns a new “pointer” (Arc) to the same memory

● Dropping an Arc decrements the reference count. If the reference count is 0, frees the memory.

What if we want to share data?

… (11 references)

● The reference count stays in sync with the number of active references to it

● Memory is freed by the last thread using it

● A way to “share ownership” across threads while (largely) guaranteeing that:

○ Every value will get cleaned up (prevent memory leaks)

○ Every value will only get cleaned up once all threads are done with it.

What if we want to share data?

What if we want to share and modify data?

● Mutex!

● In Rust, data goes inside the mutex

Arc allows us to share the mutex across threads
without worrying about lifetime/use-after-free

Mutex helps us make sure that only one thread can
access it at the same time.

What if we want to share and modify data?

● You need to lock the mutex before accessing
the data inside

● Locking a mutex returns a Result with (on
success) a MutexGuard:

○ You can use this like a pointer to access

the data.

○ Throughout the lifetime of the MutexGuard

— until it’s dropped — the mutex is locked.

○ Dropping the MutexGuard unlocks the

mutex.

○ Dropping can happen implicitly (e.g.,

variable goes out of scope) or explicitly
(call to `drop`).

https://doc.rust-lang.org/std/sync/struct.MutexGuard.html

● Note: locking a mutex will fail if the mutex has been “poisoned” — if a thread
panicked while holding a lock on the mutex.

● In this case, Rust assumes that the encapsulated data may be corrupted, and
you probably shouldn’t access it.

● In this class, you can just `unwrap` the call to `lock`.

What if we want to share and modify data?

https://doc.rust-lang.org/std/sync/struct.Mutex.html#method.lock

https://doc.rust-lang.org/std/sync/struct.Mutex.html#method.lock

Safer Multithreading

● Safe Rust does not prevent all race conditions, but it does prevent data races

○ “Multiple threads access a value, where at least one of them is writing”
○ Significantly: it prevents dangling pointers/use-after-free errors that can emerge

from multithreading.

● What else can go wrong in Rust with multithreading?

○ Dropping a lock in the wrong place

■ Inadvertently serializing your code

■ Race conditions / unexpected behavior due to interactions across multiple

lines of code

○ Deadlock, livelock, and starvation

■ Cool project in development: “Avoiding Rust Deadlocks via Visualizing Lifetime”
— an IDE tool to highlight critical sections + help people avoid deadlock!

https://en.wikipedia.org/wiki/Deadlock#Livelock
https://en.wikipedia.org/wiki/Starvation_(computer_science)
https://ist.psu.edu/research/projects/rust-deadlocks

More recommended reading

● Why threads are a bad idea (for most purposes)

● Understanding Memory and Thread Safety Practices and Issues in Real-

World Rust Programs

● Search for “race condition” on CVE (publicly-disclosed vulnerabilities)

database

○ Search for “rust race condition”

● Data Races and Race Conditions (from the Rust book)

● Optional end-of-quarter 110L content: channels and event-driven

programming

https://web.stanford.edu/class/cs240/readings/threads.pdf
https://cseweb.ucsd.edu/~yiying/RustStudy-PLDI20.pdf
https://cseweb.ucsd.edu/~yiying/RustStudy-PLDI20.pdf
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=race+condition
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust+race+condition
https://doc.rust-lang.org/nomicon/races.html

Notes

● Rust also has implementations for semaphores and condition variables.

● Sema: one implementation of a semaphore (there isn’t one in the standard

library)

● CondVar: this is in the standard library

● You shouldn’t need them in this class, and they’re not that different from
CS110 material, so I’m not covering them directly.

● There are multithreading examples from 2020 that use both; check those out
if you’re interested, and I’m happy to answer questions!

https://crates.io/crates/sema/0.1.4
https://doc.rust-lang.org/stable/std/sync/struct.Condvar.html
https://reberhardt.com/cs110l/spring-2020/

Let’s practice!

Link Explorer

● You and your friends are bored, so
you decided to play a game (as one
does) where you go to a random
Wikipedia page and try to find a link
to another wikipedia page that is the
longest (by length of the html)

● You decide to enlist Rust (along with
the reqwest and select crates) to help
you.

https://docs.rs/reqwest/latest/reqwest/
https://github.com/utkarshkukreti/select.rs

[code]

see lecture notes :)

