
Intro to Multithreading

CS110L

February 14, 2022

Logistics

● Project 1 due on Sunday

○ Post questions in #proj1-discussion

○ Please let me know if I can help!!!

○ Collaborate with each other — it’ll make things easier. :)

Why is multithreading nice?

● Parallelism and concurrency!

● Particularly helpful if…

○ Program is I/O bound: e.g., time spent waiting for a response from the
network or data from file system. While one thread is idle, other threads
can use the CPU. Allow the scheduler to interleave for you.

○ There are multiple cores: do multiple CPU-intensive tasks in parallel.

Perils of concurrency

● Why is multithreading dangerous?

○ Race conditions

■ Cause the program to not work… but only sometimes! They’re easy
to miss in testing and extremely hard to debug.

■ If you’ve taken CS110, I probably don’t have to tell you that race
conditions are frustrating.

○ Deadlock (more next week)

Intense race condition example: Therac-25

https://hci.cs.siue.edu/NSF/Files/Semester/Week13-2/PPT-Text/Slide13.html

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

https://hci.cs.siue.edu/NSF/Files/Semester/Week13-2/PPT-Text/Slide13.html
https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Intense race condition example: Therac-25

http://radonc.wikidot.com/radiation-accident-therac25

http://radonc.wikidot.com/radiation-accident-therac25

Intense race condition example: Therac-25

After each overdose the creators of Therac-25 were contacted. After the first incident the AECL
responses was simple: “After careful consideration, we are of the opinion that this damage could
not have been produced by any malfunction of the Therac-25 or by any operator error
(Leveson,1993).”

After the 2nd incident the AECL sent a service technician to the Therac-25 machine, he was unable
to recreate the malfunction and therefore conclude nothing was wrong with the software.
Some minor adjustments to the hardware were changed but the main problems still remained.

It was not until the fifth incident that any formal action was taken by the AECL. However it was a
physicist at the hospital where the 4th and 5th incident took place in Tyler, Texas who actually was
able to reproduce the mysterious "malfunction 54". The AECL finally took action and made a
variety of changes in the software of the Therac-25 radiation treatment system.

http://radonc.wdfiles.com/local--files/radiation-accident-therac25/Therac_UGuelph_TGall.pdf

http://radonc.wdfiles.com/local--files/radiation-accident-therac25/Therac_UGuelph_TGall.pdf

Intense race condition example: Therac-25

● Investigation results:

● The failure occurred only when a particular nonstandard sequence of keystrokes

was entered on the VT-100 terminal which controlled the PDP-11 computer: an "X" to
(erroneously) select 25 MeV photon mode followed by "cursor up", "E" to (correctly)
select 25 MeV Electron mode, then "Enter", all within eight seconds.

● The equipment control task did not properly synchronize with the operator interface
task, so that race conditions occurred if the operator changed the setup too quickly.
This was missed during testing, since it took some practice before operators
were able to work quickly enough to trigger this failure mode.

● https://en.wikipedia.org/wiki/Therac-25 and http://sunnyday.mit.edu/papers/therac.pdf

https://en.wikipedia.org/wiki/Therac-25
http://sunnyday.mit.edu/papers/therac.pdf

Intense race condition example: Therac-25

● Key point: the race condition was not caught during testing,
because it was not triggered during testing.

● The company concluded: “we’ve tested it, and it didn’t happen,
so it can’t happen. Y’all must be wrong. Everything’s fine.”

Race conditions are everywhere!

● Starbucks: possible to get unlimited coffee

● GitHub: possible to get logged in as a different user

● Unlimited bitcoin, voting multiple times, using Instacart coupons multiple

times (from Jack Cable)

● Kernel race condition in CPlayground (via Ryan Eberhardt - great blog post!)

● Usually arise from an unpredictable input/behavior that is unknown at

compile time and uncaught in testing.
○ In 110, we talk about the OS scheduler
○ Other examples: user input (e.g., pressing two keys in quick succession),

an I/O operation, …

https://sakurity.com/blog/2015/05/21/starbucks.html
https://github.blog/2021-03-18-how-we-found-and-fixed-a-rare-race-condition-in-our-session-handling/
https://lightningsecurity.io/blog/race-conditions/
https://lightningsecurity.io/blog/race-conditions/
https://reberhardt.com/blog/2020/11/18/my-first-kernel-module.html

Small probabilities are deceiving

● “Given the scale that Twitter is at, a one-in-a-million chance happens 500
times a day.” (Del Harvey, 2014)

https://blog.ted.com/how-to-keep-240-million-twitter-users-safe-del-harvey-at-ted2014/

Compounding effects

● “I’m just working on my hot new social media app… Who cares if it breaks 0.01% of the
time?”

● Let’s say that downloading/displaying a post involves 20 steps

○ Selecting the post to display, serializing, transmitting over the network, receiving,

rendering, etc…

● You weren’t very careful, and 5 of those steps have race conditions that each manifest 0.01%

of the time. Displaying a post will crash 0.05% of the time

● Let’s say the average user quickly scrolls through 300 posts/day. A user now has a ~15%

chance of crashing the app every day

● Next, you add a messaging feature. Sending/receiving a message also fails 0.05% of the time

● A typical user sends/receives 100 messages a day. Now your app has a ~20% chance of

crashing for a user on any given day

○ Who would want to use an app like this? (Not me!)

Recap:

● Some factors are fundamentally unpredictable

● Race conditions happen only sometimes.

○ No hard guarantees that they will be caught by static/dynamic analysis

● Scale matters in systems; small probabilities compound.

○ What happens when we scale this up?

○ What happens in a complicated codebase (e.g., millions of lines of code)

● When working with concurrency, you must be meticulous and disciplined

● Even the very best programmers make mistakes! We need more tools to

help us prevent and identify problems.

Preventing data races

What are race conditions?

● Race condition: 
A race condition or race hazard is the condition of an electronics, software, or
other system where the system's substantive behavior is dependent on the
sequence or timing of other uncontrollable events. (Wikipedia)

● Data race: 
Multiple threads access a value, where at least one of them is writing
○ This should sound familiar!

https://en.wikipedia.org/wiki/Race_condition

Rust’s design pays off

● Rust’s design goals:

○ How do you do safe systems programming?

○ How do you make concurrency painless?

○ How do you make it fast?

● “Initially these [first two] problems seemed orthogonal, but to our amazement, the
solution turned out to be identical: the same tools that make Rust safe also help you
tackle concurrency head-on.” (Rust blog)

● Compiler enforces rules for safe concurrency. “Thread safety isn't just
documentation; it's law.”

● There’s very little in the core language specific to threading! (Only two traits!) Almost
all thread safety comes from the ownership model you already know

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

Hello world!
use std::{thread, time};
use rand::Rng;

const NUM_THREADS: u32 = 20;

fn main() {
 let mut threads = Vec::new();
 println!("Spawning {} threads...", NUM_THREADS);
 for _ in 0..NUM_THREADS {
 threads.push(thread::spawn(|| {
 let mut rng = rand::thread_rng();
 thread::sleep(time::Duration::from_millis(rng.gen_range(0, 5000)));
 println!("Thread finished running!");
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic happened inside of a thread!");
 }
 println!("All threads finished!");
}

Closure/lambda function borrows
any referenced variables

Parameters for closure function (none, in this case)

A panic in a thread will not crash the entire program

Can check if the thread panicked (and deal with it)

Playground Helpful explainer of closures in Rust

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=186a666f1d4007cffe7fa9ca02aa8fdb
https://zhauniarovich.com/post/2020/2020-12-closures-in-rust/

Extroverts demo (CS 110)
static const char *kExtroverts[] = {
 "Frank", "Jon", "Lauren", "Marco", "Julie", "Patty",
 "Tagalong Introvert Jerry"
};
static const size_t kNumExtroverts = sizeof(kExtroverts)/sizeof(kExtroverts[0]) - 1;

int main() {
 vector<thread> threads;
 for (size_t i = 0; i < kNumExtroverts; i++) {
 threads.push_back(thread([&i](){
 cout << "Hello from extrovert " << kExtroverts[i] << "!" << endl;
 }));
 }
 // wait for all the threads to finish
 for (thread& handle : threads) {
 handle.join();
 }
 return 0;
}

Passes a reference/pointer to i, but then the
main thread changes i on the next iteration of the
for loop. By the time the new thread runs, i is 7

Cplayground

https://cplayground.com/?p=newt-sheep-lapwing

Can we do the same in Rust?

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=3fbb09b0d7471e6621cfc6546f542aa4

Can we do the same in Rust?

use std::thread;

const NAMES: [&str; 7] = ["Frank", "Jon", "Lauren", "Marco", "Julie", "Patty",
 "Tagalong Introvert Jerry"];

fn main() {
 let mut threads = Vec::new();
 for i in 0..6 {
 threads.push(thread::spawn(|| {
 println!("Hello from extrovert {}!", NAMES[i]);
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic occurred in thread!");
 }
}

Rust playground

Closure/lambda function borrows referenced
variables by default (whenever possible)

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=cab92a1182e9779e13dea6941d0f5c1a

Can we do the same in Rust?

error[E0373]: closure may outlive the current function, but it borrows `i`, which is owned by the
current function
 --> src/main.rs:9:36
 |
9 | threads.push(thread::spawn(|| {
 | ^^ may outlive borrowed value `i`
10 | println!("Hello from extrovert {}!", NAMES[i]);
 | - `i` is borrowed here
 |
note: function requires argument type to outlive `'static`
 --> src/main.rs:9:22
 |
9 | threads.push(thread::spawn(|| {
 | ______________________^
10 | | println!("Hello from extrovert {}!", NAMES[i]);
11 | | }));
 | |__________^
help: to force the closure to take ownership of `i` (and any other referenced variables), use the
`move` keyword
 |
9 | threads.push(thread::spawn(move || {
 | ^^^^^^^

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=3ee846b7cc8127b788bde031e9381b24
https://doc.rust-lang.org/stable/error-index.html#E0373
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=4141caf1577219e8dd96d16409ab6816#
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=4141caf1577219e8dd96d16409ab6816#

error[E0373]: closure may outlive the current function, but it borrows `i`, which is owned by the
current function
 --> src/main.rs:9:36
 |
9 | threads.push(thread::spawn(|| {
 | ^^ may outlive borrowed value `i`
10 | println!("Hello from extrovert {}!", NAMES[i]);
 | - `i` is borrowed here
 |
note: function requires argument type to outlive `'static`
 --> src/main.rs:9:22
 |
9 | threads.push(thread::spawn(|| {
 | ______________________^
10 | | println!("Hello from extrovert {}!", NAMES[i]);
11 | | }));
 | |__________^
help: to force the closure to take ownership of `i` (and any other referenced variables), use the
`move` keyword
 |
9 | threads.push(thread::spawn(move || {
 | ^^^^^^^

Can we do the same in Rust?

https://doc.rust-lang.org/stable/error-index.html#E0373
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=4141caf1577219e8dd96d16409ab6816#
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=4141caf1577219e8dd96d16409ab6816#
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=3ee846b7cc8127b788bde031e9381b24

Can we do the same in Rust?

use std::thread;

const NAMES: [&str; 7] = ["Frank", "Jon", "Lauren", "Marco", "Julie", "Patty",
 "Tagalong Introvert Jerry"];

fn main() {
 let mut threads = Vec::new();
 for i in 0..6 {
 threads.push(thread::spawn(move || {
 println!("Hello from extrovert {}!", NAMES[i]);
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic occurred in thread!");
 }
}

Rust playground

i is moved into the closure function;
closure now has ownership

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=d899877c3ea198d63dd5bb37d7c41b8b

Ticket agents demo (CS 110)
static void ticketAgent(size_t id, size_t& remainingTickets) {
 while (remainingTickets > 0) {
 handleCall(); // sleep for a small amount of time to emulate conversation time.
 remainingTickets--;
 cout << oslock << "Agent #" << id << " sold a ticket! (" << remainingTickets
 << " more to be sold)." << endl << osunlock;
 if (shouldTakeBreak()) // flip a biased coin
 takeBreak(); // if comes up heads, sleep for a random time to take a break
 }
 cout << oslock << "Agent #" << id << " notices all tickets are sold, and goes home!"
 << endl << osunlock;
}

int main(int argc, const char *argv[]) {
 thread agents[10];
 size_t remainingTickets = 250;
 for (size_t i = 0; i < 10; i++)
 agents[i] = thread(ticketAgent, 101 + i, ref(remainingTickets));
 for (thread& agent: agents) agent.join();
 cout << "End of Business Day!" << endl;
 return 0;
}

Multiple threads get mutable
reference to remainingTickets

Value decremented simultaneously

Cplayground

https://cplayground.com/?p=caterpillar-dragonfly-grouse

Ticket agents demo (CS 110)

● Race condition issue 1:

while (remainingTickets > 0) {
 handleCall(); // sleep for a small amount of time to emulate conversation time.
 remainingTickets--;

● Thread A reads that `remainingTickets` is 1, then goes to handle a call.

● Thread B reads that `remainingTickets` is 1, then goes to handle a call.

● Thread A decrements `remainingTickets` to 0.

● Thread B decrements `remainingTickets` to… UINT_MAX

Ticket agents demo (CS 110)

● Race condition issue 2:

 remainingTickets--;
● Operations involved (roughly): read `remainingTickets` from memory, do

some arithmetic in registers, write result of this arithmetic back to memory

● Say that remainingTickets is 5

● Thread A starts this operation: reads `5` from memory

● Thread B starts this operation: reads `5` from memory

● Thread B decrements; writes back its result — `4` — to memory

● Thread A decrements; writes back its result — `4` — to memory

● Value is out of sync! Should have decremented to `3`. The result of thread
A’s calculation overwrote the result of thread B’s calculation.

Let’s rewrite it in Rust!

Attempt 1

fn main() {
 let mut remaining_tickets = 250;

 let mut threads = Vec::new();
 for i in 0..10 {
 threads.push(thread::spawn(move || {
 ticket_agent(i, &mut remaining_tickets)
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic occurred in thread!");
 }
 println!("End of business day!");
}

Rust playground

This code only compiles because i32 is
Copy. Every thread is getting its own copy
of the number! Not at all what we want!

If remaining_tickets were a non-Copy
type, we would get an error when trying to
give ownership to multiple threads

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=b61d653c79b8eec73fdb9a5c24e98244

Attempt 2: Shared ownership

● We want to have one remaining_tickets counter that is shared between all threads

● …but shared in a “safe” way (without data races)

● Rust allows shared ownership using reference counting

○ Take the thing you want to share and allocate it on the heap, along with a reference count

○ Whenever you share the object with another owner, increment the reference count

1

Attempt 2: Shared ownership

● We want to have one remaining_tickets counter that is shared between all threads

● Rust allows shared ownership using reference counting

○ Take the thing you want to share and allocate it on the heap, along with a reference count

○ Whenever you share the object with another owner, increment the reference count

2

○ Whenever an owner drops the object, decrement the reference count

Attempt 2: Shared ownership

● We want to have one remaining_tickets counter that is shared between all threads

● Rust allows shared ownership using reference counting

○ Take the thing you want to share and allocate it on the heap, along with a reference count

○ Whenever you share the object with another owner, increment the reference count

○ Whenever an owner drops the object, decrement the reference count

1

○ When the reference count hits 0, free the memory

Attempt 2: Shared ownership

● We want to have one remaining_tickets counter that is shared between all threads

● Rust allows shared ownership using reference counting

○ Take the thing you want to share and allocate it on the heap, along with a reference count

○ Whenever you share the object with another owner, increment the reference count

○ Whenever an owner drops the object, decrement the reference count

○ When the reference count hits 0, free the memory

0

Note that this is NOT A REFERENCE. Entirely different implementation and functionality! References cannot
outlive their owners, but with shared ownership, owners don’t need to worry about each others’ lifetimes

Attempt 2: Shared ownership

● We want to have one remaining_tickets counter that is shared between all threads

● Rust allows shared ownership using reference counting

○ Take the thing you want to share and allocate it on the heap, along with a reference count

○ Whenever you share the object with another owner, increment the reference count

○ Whenever an owner drops the object, decrement the reference count

○ When the reference count hits 0, free the memory

● Arc type: Atomically Reference Counted

○ Atomic: safe for multithreaded use

○ You may see the Rc type used in non-multithreaded settings (not used in this class)

fn make_bear() -> Arc<Bear> {
 let owner1 = Arc::new(Bear {});
 let owner2 = owner1.clone();
 return owner2;
}

1

Arc<Bear>
owner1:

Arc<Bear>
owner2:

2

https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html

Attempt 2: Shared ownership

● We want to have one remaining_tickets counter that is shared between all threads

● Rust allows shared ownership using reference counting

○ Take the thing you want to share and allocate it on the heap, along with a reference count

○ Whenever you share the object with another owner, increment the reference count

○ Whenever an owner drops the object, decrement the reference count

○ When the reference count hits 0, free the memory

● Arc type: Atomically Reference Counted

○ Atomic: safe for multithreaded use

○ You may see the Rc type used in non-multithreaded settings (not used in this class)

fn make_bear() -> Arc<Bear> {
 let owner1 = Arc::new(Bear {});
 let owner2 = owner1.clone();
 return owner2;
}

1
Arc<Bear>

owner2:
return value:

https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html

Attempt 2: Shared ownership

fn main() {
 let remaining_tickets = Arc::new(250);

 let mut threads = Vec::new();
 for i in 0..10 {
 let remaining_tickets_handle = remaining_tickets.clone();
 threads.push(thread::spawn(move || {
 ticket_agent(i, remaining_tickets_handle)
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic occurred in thread!");
 }
 println!("End of business day!");
}

Rust playground

11

main thread

remaining_tickets_handle:

thread 1

remaining_tickets_handle:

thread 2

remaining_tickets_handle:

thread 3

remaining_tickets_handle:

…

Stacks

Heap

250

remaining_tickets
+ ref count

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=a4da60212df4bba49bf93930e45624cd

Problem: We can’t modify data in an Arc!

● Arc allows us to have multiple owners, but multiple ownership is only safe if
the data is immutable

○ Otherwise, we could have someone altering the bear while someone else

is painting it

● We need a way to safely coordinate access so that if someone wants to

modify the bear, we ensure no one else is currently using it

error[E0594]: cannot assign to data in an `Arc`
 --> src/main.rs:24:9
 |
24 | *remaining_tickets -= 1;
 | ^^^^^^^^^^^^^^^^^^^^^^^ cannot assign
 |
 = help: trait `DerefMut` is required to modify through a dereference, but it is not implemented for `Arc<usize>`

https://doc.rust-lang.org/stable/error-index.html#E0594
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=1d4e7507ce7e9b9010510ad663fbf843#

Attempt 3: Coordinated access with mutexes

● In Rust, the data goes inside the mutex

● The Mutex acts like a bathroom lock, where only one owner can pass at a

time

● Unlike in C/C++, it is impossible to forget to lock a mutex! You can’t access

the data without going inside and locking the lock

2

https://doc.rust-lang.org/std/sync/struct.Mutex.html

main thread

remaining_tickets_handle:

thread 1

remaining_tickets_handle:

thread 2

remaining_tickets_handle:

thread 3

remaining_tickets_handle:

…

Stacks

Attempt 3: Coordinated access with mutexes

fn main() {
 let remaining_tickets: Arc<Mutex<usize>>
 = Arc::new(Mutex::new(250));

 let mut threads = Vec::new();
 for i in 0..10 {
 let remaining_tickets_handle = remaining_tickets.clone();
 threads.push(thread::spawn(move || {
 ticket_agent(i, remaining_tickets_handle);
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic occurred in thread!");
 }
 println!("End of business day!");
}

Rust playground

11

…

Heap

Mutex

250

Takes care of
reference counting

(Drop when no longer
in use)

Takes care of
mutability — only
one thread can
write at the same
time.

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=fa17bd99af7bb200fffcb8649085dc40

Attempt 3: Coordinated access with mutexes

fn ticket_agent(id: usize, remaining_tickets: Arc<Mutex<usize>>) {
 loop {
 let mut remaining_tickets_ref =
 remaining_tickets.lock().unwrap();
 if *remaining_tickets_ref == 0 {
 break;
 }
 handle_call();
 *remaining_tickets_ref -= 1;
 println!("Agent #{} sold a ticket! ({} more to be sold)",
 id, *remaining_tickets_ref);
 if should_take_break() {
 take_break();
 }
 }

 println!("Agent #{} notices all tickets are sold, and goes home!", id);
}

Rust playground

11

main thread

remaining_tickets:

thread 1

remaining_tickets:

Stacks

Heap

Mutex

250

Mutex documentation

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=8bb6073f5d4c36c483abbe4f2b7411dc
https://doc.rust-lang.org/std/sync/struct.Mutex.html

Attempt 3: Coordinated access with mutexes

fn ticket_agent(id: usize, remaining_tickets: Arc<Mutex<usize>>) {
 loop {
 let mut remaining_tickets_ref =
 remaining_tickets.lock().unwrap();
 if *remaining_tickets_ref == 0 {
 break;
 }
 handle_call();
 *remaining_tickets_ref -= 1;
 println!("Agent #{} sold a ticket! ({} more to be sold)",
 id, *remaining_tickets_ref);
 if should_take_break() {
 take_break();
 }
 }

 println!("Agent #{} notices all tickets are sold, and goes home!", id);
}

Rust playground

11

main thread

remaining_tickets:

thread 1

remaining_tickets:

Stacks

Heap

Mutex

250

remaining_tickets_ref dropped at
end of scope, lock is unlocked

remaining_tickets_ref:

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=8bb6073f5d4c36c483abbe4f2b7411dc

thread 1

remaining_tickets:

Attempt 3: Coordinated access with mutexes

fn ticket_agent(id: usize, remaining_tickets: Arc<Mutex<usize>>) {
 loop {
 let mut remaining_tickets_ref =
 remaining_tickets.lock().unwrap();
 if *remaining_tickets_ref == 0 {
 break;
 }
 handle_call();
 *remaining_tickets_ref -= 1;
 println!("Agent #{} sold a ticket! ({} more to be sold)",
 id, *remaining_tickets_ref);
 if should_take_break() {
 take_break();
 }
 }

 println!("Agent #{} notices all tickets are sold, and goes home!", id);
}

Rust playground

11

main thread

remaining_tickets:

Stacks

Heap

Mutex

250

remaining_tickets_ref dropped at
end of scope, lock is unlocked

Can’t forget to unlock the lock 👍

But this code is completely serialized!!

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=8bb6073f5d4c36c483abbe4f2b7411dc

Attempt 4: Releasing lock early

fn ticket_agent(id: usize, remaining_tickets: Arc<Mutex<usize>>) {
 loop {
 let mut remaining_tickets_ref =
 remaining_tickets.lock().unwrap();
 if *remaining_tickets_ref == 0 {
 break;
 }
 handle_call();
 *remaining_tickets_ref -= 1;
 println!("Agent #{} sold a ticket! ({} more to be sold)",
 id, *remaining_tickets_ref);
 drop(remaining_tickets_ref);
 if should_take_break() {
 take_break();
 }
 }

 println!("Agent #{} notices all tickets are sold, and goes home!", id);
} Rust playground

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=0d01f75abed7098870668cceeb57353e

Note: alternate syntax - “create” a scope to induce `drop`

fn ticket_agent(id: usize, remaining_tickets: Arc<Mutex<usize>>) {
 loop {

{
 let mut remaining_tickets_ref =
 remaining_tickets.lock().unwrap();
 if *remaining_tickets_ref == 0 {
 break;
 }
 handle_call();
 *remaining_tickets_ref -= 1;
 println!("Agent #{} sold a ticket! ({} more to be sold)",
 id, *remaining_tickets_ref);

 }
 if should_take_break() {
 take_break();
 }
 }

 println!("Agent #{} notices all tickets are sold, and goes home!", id);
}

remaining_tickets_ref dropped at
end of scope, lock is unlocked

Alternative: decomposition! E.g., create new
scope by creating a new function. Example
implementation here. This is what we
recommend in the week 7 exercises.

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=eea5e206e353bc8155f80975f9d1882e

Note: documentation for Mutex

● Lock: “Acquires a mutex, blocking the current thread until it is able to do so.”

● Returns LockResult (a Result type)
● Ok variant will contain a MutexGuard

● A “scoped lock” on a mutex: when this structure is dropped, the lock will be

unlocked

● Data protected by the mutex can be accessed by dereferencing.

● Error variant indicates the mutex is “poisoned”:

● Poisoning = another thread panicked while holding the mutex.

● Data in the mutex may be in a corrupted state.

● In the previous example, we unwrapped (crash/exit if mutex is poisoned), but

you could handle this error case differently.

● See also - lock_guard in C++!

https://doc.rust-lang.org/std/sync/struct.Mutex.html#method.lock
https://doc.rust-lang.org/std/sync/type.LockResult.html
https://doc.rust-lang.org/std/sync/struct.MutexGuard.html
https://en.cppreference.com/w/cpp/thread/lock_guard

Still need to put `drop` in the right place

● Race condition issue 2: `remaining_tickets--` concurrently

● Can no longer happen in this code. Must lock mutex in order to modify the

value. (Like `atomic` wrapper in C++.)

● Race condition issue 1: context switch between check (`remaining_tickets ==

0`) and decrement.

● Can still happen if you release the lock early — even if both of these

operations, separately, are protected.

Still need to put `drop` in the right place
fn ticket_agent(id: usize, remaining_tickets: Arc<Mutex<usize>>) {
 loop {
 let remaining_tickets_ref =
 remaining_tickets.lock().unwrap();
 if *remaining_tickets_ref == 0 {
 break;
 }

drop(remaining_tickets_ref);
 handle_call();
 let mut remaining_tickets_ref = remaining_tickets.lock().unwrap();
 *remaining_tickets_ref -= 1;
 println!("Agent #{} sold a ticket! ({} more to be sold)",
 id, *remaining_tickets_ref);
 drop(remaining_tickets_ref);
 if should_take_break() {
 take_break();
 }
 }

 println!("Agent #{} notices all tickets are sold, and goes home!", id);
}

This sometimes works…
and sometimes crashes

with an “underflow error”.

Summary

● Rust does not prevent all race conditions, but it does prevent data races
○ Multiple threads access a value, where at least one of them is writing
○ Most common type of race condition in systems programming — big win!
○ This is also a huge advantage over other memory-safe languages. Garbage

collection provides memory safety but not thread safety
● You still need to be sure to drop in the right place

● You still must be careful to avoid inadvertently serializing your code

● Deadlock can still be a problem

Week 7 exercises

● Very short! Get to know the syntax. Due next Wednesday.

● Here's some commented code for the ticket agents problem. Use it as an

example for:

○ Spawning and joining threads

○ Establishing and moving data — should be shareable and mutable and

protected (from data races) across multiple threads.

○ Accessing this data within threads by “locking” the mutex — without

serializing the code and without introducing race conditions.

● Next week: more multithreading practice!

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=eea5e206e353bc8155f80975f9d1882e

