
Multiprocessing (part 2)

CS110L

February 9th, 2022

Logistics: Syllabus for the Rest of the Class!

● Next Monday (2/14): In-class time for project 1 work

● I’ll be in Hewlett 101 as usual, and I’ll have a Zoom link on Canvas that

I’ll have open so that you can join that way.

● Come through! Talk about it! Ask questions! Collaborate! Get that

participation grade!!!

This could be you!

Next Monday in Hewlett 101

(or on Zoom)!

Logistics: Syllabus for the Rest of the Class!

● Next Wednesday (2/16): Multithreading I
● 2/21: no class (president’s day)

● Week 7 exercises (due 2/22; practice on stuff from Multithreading I class)

● 2/23: Multithreading II (some in-class coding)

● Recorded video: project 2 walkthrough

● 2/28: Project 2 Q&A + in-class time for project 2 work

● 3/2 and 3/7: somewhat tbd. Most likely: communication with channels and brief

overview of event-driven programming.
● 3/9: Wrap-up

● Note: project 2 is due on 3/11, because that’s the last day I can assign something

to be due, but feel free to ask for an extension. I have to submit grades on 3/22.

Corresponding lecture recordings for multiprocessing:

● Previous multiprocessing content (2/2 and 2/7)

● What can go wrong in fork(): second half of “Winter 2022 CS110L lecture 9”

on Canvas (after generics)

● Intro to multiprocessing in Rust + project 1 walkthrough: “Winter 2022

CS110L Lecture 10 + Project 1 Walkthrough” (on Canvas)

● Today: pipe() and how browsers use multiprocessing

● For pipe, see “Spring 2021 CS110L lecture 11” on Canvas, starting at 34:00.

● Previous years have also covered signal(), but we aren’t — it’s not used in

CS110 anymore. (Which is good!) If you want to watch last year’s material on
signal(), it’s in “Spring 2021 CS110L lecture 11” on Canvas, starting at 40:00.

● For browser material, see “Spring 2021 CS110L lecture 12” on Canvas.

pipe(): what could go wrong?

Problems with pipes

What can you think of?

Problems with pipes

● Leaked file descriptors

● Calling close() on bad values 

Example: 
if (close(fds[1] == -1)) {  
 printf("Error closing!");  
}

● Use-before-pipe (i.e. use of uninitialized ints)

● Use-after-close

Potential solution

● Define a pipe type instead of using numbers!

● Writing to a stdin pipe: 

let mut child = Command::new("cat")  
 .stdin(Stdio::piped())  
 .stdout(Stdio::piped())  
 .spawn()?;  
child.stdin.as_mut().unwrap().write_all(b"Hello, world!\n")?;  
let output = child.wait_with_output()?;

● The os_pipe crate allows for creating arbitrary pipes. (The Drop trait closes
the pipe.)

https://stackoverflow.com/a/49597789
https://docs.rs/os_pipe/0.9.1/os_pipe/

Problems with pipes (one more issue!)

● When a pipe “fills up”, process will block on write call until data is read out of
the pipe. This can lead to deadlock, for example:

● Say there are two pipes and two processes. Pipe #1 = process A ->

process B; pipe #2 = process B -> process A

● Process A fills up a pipe #1 — needs to stop writing until process B

reads from the pipe

● Meanwhile, process B fills up pipe #2 — needs to stop writing until

process A reads

● Process A waiting for Process B and Process B waiting for Process A

=> deadlock

What’s the point?

Why are we bothering with all of this?

● In CS 110, we’re spending so much time learning how to call fork and pipe and
(in previous quarters) signal, and now you’re telling us not to do all those
things… What’s up with that?

● Systems code is extremely detail oriented, and you need to have an
understanding of how everything works

● You can swap two lines and get totally different behavior

● We want you to understand how these low-level primitives work…

● So that you can debug problems no one else can and design new types of

systems

● So that you can respect them enough to not use them if you don’t need to

Don’t call signal()

signal() is a system call that sets up a signal handler, which is a method that is automatically invoked
whenever a given signal comes in. For example, you might have a signal handler that runs when a
user presses Ctrl-C (SIGINT). We’re not covering signal(), because it’s no longer used in 110! It
has been replaced by teaching how to use `sigwait` for handling signals (which I think is good).

If you’re interested, check out “CS110L lecture 11” on Canvas, starting at 40:00.
The corresponding slides and some lecture notes are on Ryan’s website here,

under lecture 11.

https://reberhardt.com/cs110l/spring-2021/slides/lecture-11.pdf

Browsers Case Study

Processes

pid = 1000

stack

heap
data/globals

code

1 2 3 …

%rax %rbx %rcx
%rdx %rsp %rip

saved registers:

file descriptor table:

pid = 1001

stack

heap
data/globals

code

1 2 3 …

%rax %rbx %rcx
%rdx %rsp %rip

saved registers:

file descriptor table:

Processes can synchronize using (generally) signals and pipes

For other approaches, see: “inter-process communication” (IPC)

pipe

pipe

SIGS
TOP

https://en.wikipedia.org/wiki/Inter-process_communication

Threads

…

pid = 1000
stack1

heap

data/globals

code

1 2 3 …

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

file descriptor table:

tid = 1001

stack2

1 2 3

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

file descriptor table:

Under the hood, a thread gets its own “process control block” and is scheduled
independently, but it is linked to the process that spawned it

What are the tradeoffs between threads and processes?

● If you were to make a “pro” and “con” list, what would it look like?

● If you were designing a system that supports concurrency, why might you

use threads? Why might you use processes?

Considerations when designing a browser

● What do you care about?

Considerations when designing a browser

● Speed

● Resource usage (memory, battery, CPU…)

● Ease of development

● Security

● Stability

Questions:
Would threads or processes serve you better for each of these considerations?

Considerations when designing a browser

● Speed

● Typically faster to share memory and to use lightweight synchronization primitives

● Processes incur additional context switching overhead

● Memory, battery, and CPU usage

● Processes use more memory

● Processes incur additional context switching overhead

● Ease of development

● Communication is WAY easier using threads

● That being said, bugs caused by multithreading are extremely hard to track down

● Security, stability

● Multiprocessing provides isolation. Multithreading does not.

Modern browsers are essentially operating systems

https://developer.mozilla.org/en-US/docs/Web/API

● Storage APIs

● Concurrency APIs

● Hardware APIs (e.g.

communicate with MIDI
devices, GPU)

● Run assembly

● Run Windows 95:

https://win95.ajf.me/

https://developer.mozilla.org/en-US/docs/Web/API
https://win95.ajf.me/

Motivation for Chrome

It's nearly impossible to build a rendering engine that never crashes or hangs. It's
also nearly impossible to build a rendering engine that is perfectly secure.
In some ways, the state of web browsers around 2006 was like that of the single-user, co-
operatively multi-tasked operating systems of the past. As a misbehaving application in such
an operating system could take down the entire system, so could a misbehaving web page in
a web browser. All it took is one browser or plug-in bug to bring down the entire browser and
all of the currently running tabs.

Modern operating systems are more robust because they put applications into
separate processes that are walled off from one another. A crash in one application
generally does not impair other applications or the integrity of the operating system, and each
user's access to other users' data is restricted.

https://www.chromium.org/developers/design-documents/multi-process-architecture

https://www.chromium.org/developers/design-documents/multi-process-architecture

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:

• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in M70,
13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, vulnerability reward programs, etc. Note
that this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into an
exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://bugs.chromium.org/p/chromium/issues/list?can=1&q=Release%3D0-M69%2C1-M69%2C2-M69%2C3-M69+Type%3DBug-Security+Security_Severity%3DHigh%2CCritical+-status%3ADuplicate+label%3Aallpublic+component%3ABlink%2CInternals%3ECompositing%2CInternals%3EImages%3ECodecs%2CInternals%3EMedia%2CInternals%3ESkia%2CInternals%3EWebRTC%2C+-component%3ABlink%3EMedia%3EPictureInPicture%2CBlink%3EPayments%2CBlink%3EStorage%2CInternals%3ECore%2CInternals%3EPrinting%2CInternals%3EStorage%2CMojo%2CServices%3ESync%2CUI%3EBrowser&sort=m&groupby=&colspec=ID+Status+CVE+Security_Severity+Security_Impact+Component+Summary
https://bugs.chromium.org/p/chromium/issues/list?sort=m&groupby=&colspec=ID%20Status%20CVE%20Security_Severity%20Security_Impact%20Component%20Summary&q=Release%3D0-M70%2C1-M70%2C2-M70%2C3-M70%20Type%3DBug-Security%20Security_Severity%3DHigh%2CCritical%20-status%3ADuplicate%20label%3Aallpublic%20component%3ABlink%2CInternals%3ECompositing%2CInternals%3EImages%3ECodecs%2CInternals%3EMedia%2CInternals%3ESkia%2CInternals%3EWebRTC%2C%20-component%3ABlink%3EMedia%3EPictureInPicture%2CBlink%3EPayments%2CBlink%3EStorage%2CInternals%3ECore%2CInternals%3EPrinting%2CInternals%3EStorage%2CMojo%2CServices%3ESync%2CUI%3EBrowser&can=1
https://bugs.chromium.org/p/chromium/issues/list?sort=m&groupby=&colspec=ID%20Status%20CVE%20Security_Severity%20Security_Impact%20Component%20Summary&q=Release%3D0-M71%2C1-M71%2C2-M71%2C3-M71%20Type%3DBug-Security%20Security_Severity%3DHigh%2CCritical%20-status%3ADuplicate%20label%3Aallpublic%20component%3ABlink%2CInternals%3ECompositing%2CInternals%3EImages%3ECodecs%2CInternals%3EMedia%2CInternals%3ESkia%2CInternals%3EWebRTC%2C%20-component%3ABlink%3EMedia%3EPictureInPicture%2CBlink%3EPayments%2CBlink%3EStorage%2CInternals%3ECore%2CInternals%3EPrinting%2CInternals%3EStorage%2CMojo%2CServices%3ESync%2CUI%3EBrowser&can=1
https://bugs.chromium.org/p/chromium/issues/list?sort=m&groupby=&colspec=ID%20Status%20CVE%20Security_Severity%20Security_Impact%20Component%20Summary&q=Release%3D0-M72%2C1-M72%2C2-M72%2C3-M72%20Type%3DBug-Security%20Security_Severity%3DHigh%2CCritical%20-status%3ADuplicate%20label%3Aallpublic%20component%3ABlink%2CInternals%3ECompositing%2CInternals%3EImages%3ECodecs%2CInternals%3EMedia%2CInternals%3ESkia%2CInternals%3EWebRTC%2C%20-component%3ABlink%3EMedia%3EPictureInPicture%2CBlink%3EPayments%2CBlink%3EStorage%2CInternals%3ECore%2CInternals%3EPrinting%2CInternals%3EStorage%2CMojo%2CServices%3ESync%2CUI%3EBrowser&can=1
https://bugs.chromium.org/p/chromium/issues/list?sort=m&groupby=&colspec=ID%20Status%20CVE%20Security_Severity%20Security_Impact%20Component%20Summary&q=Release%3D0-M73%2C1-M73%2C2-M73%2C3-M73%20Type%3DBug-Security%20Security_Severity%3DHigh%2CCritical%20-status%3ADuplicate%20label%3Aallpublic%20component%3ABlink%2CInternals%3ECompositing%2CInternals%3EImages%3ECodecs%2CInternals%3EMedia%2CInternals%3ESkia%2CInternals%3EWebRTC%2C%20-component%3ABlink%3EMedia%3EPictureInPicture%2CBlink%3EPayments%2CBlink%3EStorage%2CInternals%3ECore%2CInternals%3EPrinting%2CInternals%3EStorage%2CMojo%2CServices%3ESync%2CUI%3EBrowser&can=1
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Data_Execution_Prevention
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://www.chromium.org/Home/chromium-security/site-isolation

Chrome architecture

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1

(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Sandboxing: Defense against RCE

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1

(great read!)

Unprivileged processes:

Majority of attack surface

Privileged
process:

Minimal
attack

surface

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Sandboxing: Defense against RCE

Hey, can
you load coolchat.com for

me?

Renderer
process for

coolchat.com

Browser
process

Sure,
here’s the data from the

network response!

Sandboxing: Defense against RCE

Renderer
process for

coolchat.com

Browser
process

Hey,
can you send this network

request to localhost?

???? lol no???? Hey,
can you encrypt this file
on disk and display a
message demanding
$1,000,000 in bitcoin?

MUAHAHAHAHA

Isolation: Increased robustness

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1

(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Chrome architecture

https://www.chromium.org/developers/design-documents/multi-process-architecture (slightly out of date)

Sandboxed processes: no access
to network, filesystem, etc

If there is embedded content, may
use multiple threads to render that
content and manage
communication between frames

https://www.chromium.org/developers/design-documents/multi-process-architecture

Chrome architecture

https://www.chromium.org/developers/design-documents/multi-process-architecture (slightly out of date)

IPC channels = pipes*

Events (e.g. click,
keystroke, etc) are
relayed through these
pipes! No signals

Message passing model

* they use slightly fancier things these
days, but the idea is still the same

https://www.chromium.org/developers/design-documents/multi-process-architecture

Chromium Rule of Two

The Rule Of 2 is: Pick no more than 2 of

● untrustworthy inputs;

● unsafe implementation language; and

● high privilege.

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

This was groundbreaking at the time!

● Really different from how other browsers had been developed

Not good enough

● What does all this work buy us, in terms of isolation?

● Isolation between tabs

● Isolation between (potentially malicious) websites and the host

● What does it not buy us?

● Isolation between resources within a tab

Embedded content

https://stanforddaily.com

Aside: third party resources in general

From CS249i
● Modern websites often rely on “third party resources”

● Third party: e.g., if you are on stanforddaily.com, any resource served from a
domain that is not stanforddaily.com

● A lot of this = ads and analytics

● Google Analytics appears on ~70% of top websites

● Also, though — fonts, other utility libraries, images, videos, tweets…

● Some data here.

● Fun experiment: click “inspect”, click “network”, and load a webpage. What network
requests being made to load the webpage? How many of them are for resources
served by the domain you’re actually visiting?

● Ex: loading `latimes` homepage = requests to ~120 domains, for ~330 resources

● Key point: a website isn’t just loading resources from one source!

https://cs249i.stanford.edu/lectures/lecture13.pdf
https://almanac.httparchive.org/en/2019/third-parties

Embedded content

http://www.evil.com

Welcome to Evil!

PIN: 1234

Same-origin policy: www.evil.com can embed bank.com, but cannot interact with
bank.com or see its data

Embedded content

● Site Isolation Project (2015-2019) aimed to put resources for different origins in
different processes

● Extremely difficult undertaking. Cross-frame communication is common (JS
postMessage API), and embedded frames need to share render buffers

● Involved rearchitecting the most core parts of Chrome

● Became especially important in Jan 2018: Spectre and Meltdown

● When the hardware fails to uphold its guarantees, JS can read arbitrary

process memory (even kernel memory, and even if your software has no
bugs)!

● Paper/video: https://www.usenix.org/conference/usenixsecurity19/presentation/
reis

https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis

Still not good enough!

Still not good enough!

● https://www.chromium.org/Home/chromium-security/memory-safety

● 70% of high-severity security bugs are caused by memory safety issues

https://www.chromium.org/Home/chromium-security/memory-safety

The limits of sandboxing

Chromium’s security architecture has always been designed to assume that these bugs exist, and code is
sandboxed to stop them taking over the host machine… But we are reaching the limits of sandboxing and site
isolation.

A key limitation is that the process is the smallest unit of isolation, but processes are not cheap.

We still have processes sharing information about multiple sites. For example, the network service is a large
component written in C++ whose job is parsing very complex inputs from any maniac on the network. This
is what we call “the doom zone” in our Rule Of 2 policy: the network service is a large, soft target and
vulnerabilities there are of Critical severity.

Just as Site Isolation improved safety by tying renderers to specific sites, we can imagine doing the same with the
network service: we could have many network service processes, each tied to a site or (preferably) an origin. That
would be beautiful, and would hugely reduce the severity of network service compromise. However, it would also
explode the number of processes Chromium needs, with all the efficiency concerns that raises.

https://www.chromium.org/Home/chromium-security/guts
https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part1.html
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md#TOC-Critical-severity

What we’re trying

We expect this strategy will boil down to two major strands:
● Significant changes to the C++ developer experience, with some performance impact.

(For instance, no raw pointers, bounds checks, and garbage collection.)
● An option of a programming language designed for compile-time safety checks with

less runtime performance impact — but obviously there is a cost to bridge between
C++ and that new language.

Anatomy of a sandbox escape

● https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html (2012 but
it’s more accessible than some other writeups)

● First exploit chains together six bugs to escape the sandbox

● Second one uses ten(!!)

● https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-
escaping.html (2019)

https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html

Aside: “Security” vs. “Privacy”

● Even if Google Chrome were “perfectly secure”…

● Can they collect & use data on your browsing history and habits? Yes.

● Can websites save cookies to track your browsing habits and actions, build

a detailed profile, target ads to you, etc.? Also yes.

● Do you “know” what you’re getting into when you sign up to use a

commercial browser? Hypothetically, yes.

● Is Google going to post your credit card number on the web? Is Google

going to leverage your Internet activity to criminalize you? Probably not (bad
for business).

Alternative approach: Servo

Alternative approach

● Wha — this all sounds like a ton of work!

● What if we just implement the browser in a language that helps us avoid

these mistakes in the first place?

● Servo is an experimental browser engine from Mozilla Research written in

Rust

● Components of Servo have been gradually adapted in Firefox (Gecko)

● Note: security was not the primary motivation for Servo, but it’s what

we’re focusing on here

Servo approach

● Have some sandboxing, but don’t sweat it too much. Tabs often share processes

● Everything is written in Rust, so we don’t have to worry about security issues, right?

Jack Moffitt: https://www.youtube.com/watch?v=an5abNFba4Q

https://www.youtube.com/watch?v=an5abNFba4Q

Rust does not prevent all bugs

Implications of Rewriting a Browser Component in Rust:

Over the course of its lifetime, there have been 69 security bugs in Firefox’s
style component. If we’d had a time machine and could have written this
component in Rust from the start, 51 (73.9%) of these bugs would not
have been possible. While Rust makes it easier to write better code, it’s not
foolproof.

There are classes of bugs that Rust explicitly does not address—
particularly correctness bugs. In fact, during the Quantum CSS rewrite,
engineers accidentally reintroduced a critical security bug that had
previously been patched in the C++ code, regressing the fix for bug
641731… As a trivial history-stealing bug, this is rated security-high.

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/

Rust code can have memory safety issues too!

● Libraries often use “unsafe Rust” when we need to do things that the compiler
can’t guarantee is safe, e.g.:

● Data structures

● Implementing new concurrency primitives

● Running platform-specific assembly instructions

● Testing Firefox with ThreadSanitizer yielded two race conditions in Rust low-
level library code: https://hacks.mozilla.org/2021/04/eliminating-data-races-in-
firefox-a-technical-report/

● Paper on memory and concurrency bugs in unsafe Rust (PDF here):
“Understanding Memory and Thread Safety Practices and Issues in Real-World
Rust Programs” (Qin et. al., 2020).

https://hacks.mozilla.org/2021/04/eliminating-data-races-in-firefox-a-technical-report/
https://hacks.mozilla.org/2021/04/eliminating-data-races-in-firefox-a-technical-report/
https://hacks.mozilla.org/2021/04/eliminating-data-races-in-firefox-a-technical-report/
https://dl.acm.org/doi/pdf/10.1145/3385412.3386036?casa_token=tOMRF-bPa2oAAAAA:-hr_z2735I6pAfraCpN1Lfi8XzRdSNQJr56uQ7_F795RFSVaVtVYCq96g0aZCwCCf4Q64XrBnVctCQ

Limitations of “Rewrite it in Rust!”

● It’s impractical to rewrite an entire project in a new language

● The majority of Firefox is still written in C++

● Rewriting projects introduces bugs (and sometimes reintroduces old, long-
fixed bugs)

● Rust code still has security vulnerabilities

● From correctness issues

● And even memory safety issues from unsafe code

Conclusion

● There is no perfect solution

● We need all the tools we can get:

● Memory-safe programming languages

● Sandboxing

● Fuzzing and dynamic analysis

● Code review, audits, bug bounty programs?

● More???

[Bonus slides] How Chrome Does Fork

● http://neugierig.org/software/chromium/notes/2011/08/zygote.html 

● Fun related bug report: https://bugs.chromium.org/p/chromium/issues/detail?
id=35793

 
What steps will reproduce the problem?
1. Develop a webapp, use chrome's devtools, minding your own business
2. In the meantime, let chrome silently autoupdate in the background
What is the expected result?
Devtools continue working
What happens instead?
Devtools break after refreshing the page after the autoupdate happened.

http://neugierig.org/software/chromium/notes/2011/08/zygote.html
https://bugs.chromium.org/p/chromium/issues/detail?id=35793
https://bugs.chromium.org/p/chromium/issues/detail?id=35793

