
Multiprocessing

CS110L

Feb 2 & Feb 7

Equivalent material is from 2020

and is available here directly or

via Ryan’s website.

https://www.youtube.com/watch?v=Gr5D4Q8wmds
https://reberhardt.com/cs110l/spring-2020/

Quick reflection: where are we in the class?

● Where we’ve been:

● Memory safety

● The ownership model that’s fundamental to Rust

● Error handling in C, C++, and Rust

● Learning enough Rust to build real, useful things

● Now:

● Into 110 material

● Concurrency, multiprocessing, threads

● …and how this relates to safety in systems programming

Today and next week

● A break from Rust-land

● Don’t call fork

● Later (probably Monday): don’t call pipe and don’t call signal

● Multiprocessing syntax in Rust

● Intro to project 1, which involves everything we’ve done so far but

with multiple processes!

fork()

Why might you call fork? 🍴

● Get concurrent execution (i.e. run another piece of your own program
at the same time)

● Invoke external functionality on the system (i.e. run a different
executable)

Fork: what could go wrong?

● Going to go through some code examples, which are all either incorrect or
potentially dangerous depending on context

● Take ~15 seconds to think about them

● Imagine jeopardy music playing in the background

● What could go wrong? Why does it matter?

Fork: what could go wrong?

Fork: what could go wrong?

Fork: what could go wrong?

Fork: what could go wrong?

● Returning from `main` = exiting
the process

● Returning from a function (not
main) = returning to its caller

● Child process got copy of its
parents call stack

● Returning here, child process
isn’t exiting — it’s going off and
executing code that was
probably intended for the parent

Concurrent execution: what could go wrong?

Concurrent execution: what could go wrong?

Exceptions
propagate up
the call
stack…

Aside: from 2021 assignment 4 starter code

In parent process, in `main`

might create child process
Exception may be thrown in these
functions (custom exception type)

- GetPid of the calling process (the
one that threw the exception)

- Compare against saved PID of
original parent process

- If these don’t match, exit the
calling process

- Why is this line of code critical?

Mixing threads & processes

[threads were just introduced today in CS110]

Mixing threads & processes

● Unlike processes, threads share the same virtual address space

● Malloc is thread-safe

● Internally, uses a lock to make sure that two threads can’t be in a
`malloc` call concurrently — to make sure that one thread can’t corrupt
another thread’s heap data.

● (Think about heap allocator in CS107 — lots of internal memory
management and data structures that could get corrupted if concurrent
access were allowed!)

Mixing threads & processes

● If the parent process had multiple active threads when it called `fork`, it
doesn’t matter — only one thread will exist in the child process (the copy of
the one that just called fork).

● After a fork, only one thread is running in the child.

● More here.

● But, remember, when you call `fork`, the child gets a duplicate of all parent
process memory

● This includes stack, heap state, etc.

● It also includes the state of any locks

https://blog.fireheart.in/a?ID=00250-e1ddeb5b-a529-43ae-be7c-4f84e512006b

Mixing threads & processes
imagine this is called by
thread A, but imagine that
— at the moment this is
called — thread B holds
the “malloc lock”

the “malloc lock” is just a
value in memory, so its
value at the moment of
`fork` is copied over into
the child’s address space

…but thread B is not running in the child
process, so it can’t actually release the lock

Mixing threads & processes

…so the child process
gets stuck on this
`malloc` call forever

Mixing threads & processes

● You might be sure that the piece of code that you’re writing doesn’t
have any threads

● But are you sure that the libraries you call don’t use any threads?

● Are you sure that there isn’t (for example) a background thread

running that was spawned in an entirely different part of the
codebase?

Mixing threads & processes

● In practice, don’t mix multiprocessing with threads if child processes
are going to do any meaningful work in the cloned memory space
(i.e., anything other than immediately calling `exec`).

● (And, remember that, in practice, it can be hard to guarantee that

there aren’t threads somewhere in your calling process)

● This category of issues (e.g., deadlock from failing to free resources) is

probably the biggest danger with `fork()`.
● If you want to use multiprocessing for concurrent execution, take the

code you want to run concurrently and put it in a separate executable

● Invoking it with `exec` will “reset” virtual memory space

What can go wrong with fork()? (recap)

● How did we (maybe) mess things up when calling fork()?

● Accidentally nesting forks when spawning multiple child processes

● Runaway children

● Failing to free locks when threads are involved

● Failure to clean up (zombie processes)

Why might you call fork? (recap/edited)🍴

● Get concurrent execution (i.e. run another piece of your own program
at the same time)

● Invoke external functionality on the system (i.e. run a different
executable) but remember to properly exit if exec fails!

Why separate fork and exec?

● Linux: customization and simplicity

● Rewire file descriptors? Change some environment variables?

Block signals? Pin a process to a particular CPU core (cache
optimization)?

● Maybe too much flexibility? —> more mistakes you can make

● Windows:
One sys call:
well-defined
API, but
complicated

Common multiprocessing tactic

● The flexibility of `fork` and `exec` is there if you need it.

● Define/use a higher level abstraction to take care of common cases

● Ex: “subprocess” (from CS110 assign3/lab3)

● Like the Windows approach, but no need for the OS to cover all

possible valid use cases

● Most of these abstractions allow you to redirect standard input/

output and provide a function that you want to be executed after
fork and before exec.

Recap (starting here on 2/7)

● Common mistakes when calling fork():

● Accidentally running code in child that’s meant for the parent (via

runaway children, or mistakenly putting code before `if pid == 0`)

● Common: failing to properly error handle `exec`, or throwing

an exception that is caught somewhere else

● Inheriting virtual memory state —> risk of deadlock with threads

● Failing to clean up (can run out of space in OS process table!)

Recap (starting here on 2/7)

● We argue: don’t call fork unless you’re about to call exec

● And: define/use a higher level abstraction to combine `fork` and

`exec` for the common cases. Generally, this will include some
interface to, e.g., create pipes.

● This abstraction is built into higher-level languages — like Python

and Rust — and can be created in C/C++ (e.g., `subprocess`
class)

Command in Rust

● Step 1: set up the command.

● What do you want to run?

Name of executable you
want the process to run

- Here, it’s `ps`, a Linux

utility for displaying info
about running processes

https://doc.rust-lang.org/std/process/struct.Command.html

From week 3 starter code
With rust-analyzer type
annotations turned on

https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man1/ps.1.html
https://doc.rust-lang.org/std/process/struct.Command.html

Command in Rust

● Step 2: set up the command (part 2)

● What arguments do you want to run it with?

https://doc.rust-lang.org/std/process/struct.Command.html

From week 3 starter code
With rust-analyzer type
annotations turned on

Arguments you want to run `ps` with

- --pid [pid] => show info about process with a

specific `pid`

- -o and on: specify how to format the output

https://doc.rust-lang.org/std/process/struct.Command.html

Command in Rust

● Step 3: run the command

● There are a few different ways to do this; here’s one

https://doc.rust-lang.org/std/process/struct.Command.html

From week 3 starter code
With rust-analyzer type
annotations turned on

.output() will:

- Run this subprocess and block (wait for it to finish)

- On success, return a Result with (if Ok) stdout,

stderr, and exit status.

https://doc.rust-lang.org/std/process/struct.Command.html

output() -> Output

● More specifically, `Command.output()` will:

● Start the subprocess

● PAUSE the parent process

● Return a Result:

● Could be an error, e.g., if `exec` failed

● If it’s Ok, it’ll contain an Output struct that contains

ExitStatus, stdout, and stderr fields

● Can think of this as a combination of fork, exec, waitpid, and rewiring

stdin/stdout to pipes!

https://doc.rust-lang.org/std/process/struct.Output.html

https://doc.rust-lang.org/std/process/struct.Output.html

Command in Rust

● Full code from week 3 starter code:

● Sets up command to invoke `ps` with arguments

● Calls output() to pause execution and get back Result<Output>

● Applies `?` to the result to extract the Output (or return Error)

● Gets the `stdout` field from the Output, and converts it to a string.

https://doc.rust-lang.org/std/process/struct.Command.html

https://doc.rust-lang.org/std/process/struct.Command.html

● Alternative step 3: .status()

● Run child process

● Pause parent’s execution until finished

● Don’t get back stdout/stderr, but do get Result(exit status)

Command in Rust
https://doc.rust-lang.org/std/process/struct.Command.html

https://doc.rust-lang.org/std/process/struct.Command.html

● Alternative step 3: .spawn()

● Start up child process

● DON’T pause parent’s execution while child is running

● Get a Result(Child struct) back

Command in Rust
https://doc.rust-lang.org/std/process/struct.Command.html

● Must call “wait” on child later!

https://doc.rust-lang.org/std/process/struct.Command.html

use std::os::unix::process::CommandExt;

...

// Initialize Command

let cmd = Command::new(“ls”);

// Add pre-exec function

unsafe {

cmd.pre_exec(function_to_run);

}

// Spawn child process

let child = cmd.spawn()

Pre-exec function (needed for project 1)

We haven’t talked about “unsafe”
Rust yet. Think about the unsafe

block here as a warning — telling
you to limit what you do in this
function. (E.g., avoid allocating

memory or accessing shared data
in the presence of threads.)

It’s rare that you would need to specify a pre-exec function, but
you’ll need it to make a system call to set up debugging in project 1

Concurrent execution

● How did we (maybe) mess things up when calling fork()?

● Accidentally nesting forks when spawning multiple child processes

● Runaway children

● Failing to free locks when threads are involved

● Failure to clean up (zombie processes)

● Still a thing!

● You could implement a struct with a Drop trait that calls wait()?

● You can also do all of these things in C++

Project 1 :)

● Is a thing! Lots of multiprocessing! Lots of Rust!

● Walkthrough slides are linked from the project 1 handout!

