(Generics In Rust

CS110L

Feb 2, 2022

Logistics

e \Week 3 exercise sample solutions posted

e \Week 5 exercises coming out tonight, due next Monday. Very short!

e Project 1 coming out Monday, due Feb 20th
o But feel free to start early :)
o Short project walkthrough on Monday during class!

e Joday: wrapping up code organization with generics and a bit of intro to
multiprocessing

Generics: Type parameters

Consolidating repetitive code

fn max(x: usize, y: usize) -> usize {
1f x>y {x } else {y}
}

fn main() {
let x: usize = read_usize("Enter a number: ");
let y: usize = read_usize("Enter another number: ");
println!("The biggest number was {}", max(x, y));

Consolidating repetitive code

fn max(x: usize, y: usize) -> usize {
1f x>y {x } else {y}

}

fn main() {
let x: usize = read_usize("Enter a number: ");
let y: usize = read_usize("Enter another number: ");
println!("The biggest number was {}", max(x, y));
let a: f32 = read_f32("Enter a decimal number: ");
let b: f32 = read_f32("Enter another decimal number: ");
println!("The biggest number was {}", max(Ca, b));

}

error[EQ308]: mismatched types
--> src/main.rs:58:47

58 println!("The biggest number was {}", max(a, b));
A expected ‘usize , found f32°

https://doc.rust-lang.org/stable/error-index.html#E0308
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018#

Consolidating repetitive code

fn max_usize(x: usize, y: usize) -> usize {
1f x>y {x } else {y}

¥

fn max_f32(x: f32, y: f32) -> f32 {
1f x>y {x } else {y}

¥

fn main() {
let x: usize = read_usize("Enter a number: ");
let y: usize = read_usize("Enter another number: ");
println!("The biggest number was {}", max_usize(x, y));
let a: f32 = read_f32("Enter a decimal number: ");
let b: f32 = read_f32("Enter another decimal number: ");
println!("The biggest number was {}", max_f32Ca, b));

Consolidating repetitive code

Table 3-1: Integer Types in Rust , , , ,
max_usize(X: usize, y: usize) -> usize {

- X
Length Signed Unsigned x>y 1x}elseiy}

8-bit i8 us
16-bit i16
32-bit i32

-DI 164
64-bit ! max_164(x: 164, y: 164) -> 164 {
128-bit 1128 1f x>y { x } else {y}

arch isize

max_132(x: 132, y: 132) -> 132 {
1f x>y {x } else {y}

max_f32(x: 32, y: f32) -> 32 {
1f x>y { x } else { vy}

Rust also has two primitive types for floating-point numbers, which
are numbers with decimal points. Rust’s floating-point types are
f32 and fe4, which are 32 bits and 64 bits in size, respectively.

max_fo4(x: fo4, y: fo4) -> fo4 {
t4 The compiler is happy! if x>y {x}else{y}
© But we are not :(There is so much code duplication!

How to decompose?

fn max_usize(x: , ’ - In traditional decomposition:
if x>y {x felse{ - Factor out the common parts into a function

5 - Define parameters for the parts that vary
fn max_132(x: ‘ @ —>@{

1f x >y { else
1 What about here?

- The bodies are the functions are the same

fn max_i64(x: y; _>{ - It's the types that are different.

1f x>y { x } else {y}

fn qu_F32(x:<:::> y:<:::> —><:::>{

if x>y {x} else {y?}?

fn max_f64(x: y: ->{

1f x>y { x } else {y}

Generic types

fn max_usize(x: , ’ - Decomposition: Factor out common parts into a
1f x>y { x ; else { i '

function, with parameters for the parts that vary.

; Here, create type parameters:
fn max_132(x: ‘ @ —>@{

1f x >y { else fn max<T>(x: T, y: T) -> T {
} if x>y {x} else {y}

¥

fn max_i64(x: y: ->{ fn main() {

1f x>y { x } else { y} let x, y: usize = // ...
1 println!("Biggest: {}", max::<usize>(x, y));

let a, b: f32 = // ...
Lntln!("B1 t: ", :1<f32 , b));

o max_f32(x:@ y: _>@{ , println!("Biggest: {}", max::<f32>Ca, b))

1f x>y { x } else { vy}
5 Alternatively, let the compiler infer T based

fn max_f64(x: y: —>{ on. Contel)'(t:.

. println!("Biggest: {}", max(x, y));
if x> b 1 x } else 1 Y ¥ println!("Biggest: {}", max(a, b));

Generic types

Note: type parameter doesn't
have to be named T

// valid (but annoying)
fn max<Banana>(x: Banana, y: Banana)

-> Banana {
1f x>y {x } else {vy}

¥

Note: can have multiple type parameters

fn myFunction<T, R, O>(x: T, y: R) -> 0 {
// Do stuff
// Return value of type O

Rust generics have no runtime overhead

- Compiled assembly:
fn max<T>(x: T, y: T) -> T {

_IN7example3max17h401c757a865d8900E :

1f x>y { x } else {y}

ks

fn main() {
let x, y: usize = // ...
println!("Biggest: {}", max(x, y));
let a, b: f32 = // ...
println!("Biggest: {}", max(a, b));

ks

We get a separate function for each type!
Assembly is identical to the code we wrote
before decomposing!

Consequently: Code cleanup cost us nothing
(practical concern, given that nicer code in
high-level languages often has performance
costs)

push
push
sub
mov
mov
mov
mov
lea
lea
call
test
cmovne
mov

add
pop

pop
ret

r14

rbx

rsp, 24

rbx, rsi

rl4, rdi

gword ptr [rsp + 8], rdi
gword ptr [rsp + 16], rsi
rdi, [rsp + §]

rsi, [rsp + 16]
_ZN4core3cmp5impls57_LTimpl$u20$core. .cmp. .PartialOrd$u20$for$u2PusizedfiT$2gt17hob7
al, al

rbx, rl4
rax, rbx
rsp, 24
rbx
rl4

_IN7example3max17ho@e8ad4caf87fe7d5SE:

sub
Movss
mMovss
Movss
movss
lea
lea
call
movss
test
jne
Movss
.LBB249_2:

add
ret

rsp, 24

dword ptr [rsp + 12], xmm@
dword ptr [rsp + 16], xmm@
dword ptr [rsp + 8], xmml
dword ptr [rsp + 20], xmml
rdi, [rsp + 16]

rsi, [rsp + 20]
_ZN4core3cmp5impls55_LTimpl$u20$core. .cmp. .PartialOrd$u20$forudf32GR2gt17h9575d
xmm@, dword ptr [rsp + 12]

al, al
.LBB249_2
xmm@, dword ptr [rsp + 8]

rsp, 24

What it we can’t handle every type?

What if we can’t handle every type?

e Our max function doesn’t actually compile fn max<T>(x: T, y: T) > T {
, 1f x>y { x } else {y}
just yet... ,

error[E0369]: binary operation "> cannot be applied to type T
--> src/main.rs:45:10

45 1f x>y {x } else {y}
A - T

|

T

help: consider restricting type parameter T

44 | fn max<T: std::cmp::PartialOrd>(x: T, y: T) > T {
AAAAAAAAAAAAAAAAAAAAAA

https://doc.rust-lang.org/stable/error-index.html#E0369
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018#

Trait bounds

e \We need to limit T to be a comparable type, i.e. a type that has the
Parti1alOrd trait implemented (which provides the <, <=, >, >= operators)

fn max<T: PartialOrd>(x: T, y: T) -> T {
1f x>y {x } else {y}

¥

(Generics and Data Structures

Data structures can be generic, too!

e Last week, our LinkedList could only hold 132s... Let’s make it capable of
storing anything!

struct Node { ————————— moeo oop» struct Node<T> {

value: 132, value: T,

next: Option<Box<Node>>, next: dE%ion<Box<Node<T>>>,
¥ ¥ -
struct LinkedList { =—————9 struct LinkedList<T> {

head: Option<Box<Node>>, head: Option<Box<Node<T>>>,

Length: usize, Length: usize, o

Data structures can be generic, too!

e You have actually seen this before... with Option and Result!

pub enum Option<T> { pub enum Result<T, E> {
/// No value /// Contains the success value 37
None, Ok(T), S
/// Some value T /// Contains the error value §S
Some(T), Err(E), é;
IS

Implementing methods on generic types

e
2 natl . el
struct Node<T> { \%Qeﬂ’@(‘_\’(f\g\\eme“““gm
E— \
value:_Iz. impl<T> LinkedList<T> {
next: Option<Box<Node<T>>>, ?ﬁ_hEWES_T;_ETEEEdList<T> f
¥ LinkedList { head: None, length: 0 }
5

struct LinkedList<T> {

head: OPti?”<B°X<NOde<T>>>’ pub fn back_mut(&mut self) -> Option<&mut Box<Node<T>>> {
Length: usize,

) // Same 1implementation as from last week
¥

pub fn push_back(&mut self, val: T) {
// Same i1mplementation as from last week

h
¥
fn main() { _ _
let mut list - LinkedList::new(); The compiler can (usually) infer the
List.push_back("Hello world!".to_string()); type parameter based on how you

} use the variable!

Conditionally defining methods on trait bounds

e Say we want to add a print() method. We need T to have Display, but we still
want the other methods to exist even if T doesn’t have Display

impl<T> LinkedList<T> { impl<T: Display> LinkedList<T> {
fn new() -> LinkedList<T> { pub fn print(&self) {
LinkedList { head: None, length: 0 } let mut curr = self.front();
1 while let Some(node) = curr {
println!("{}", node.value);
pub fn back_mut(&mut self) -> Option<&mut Box<Node<T>>> { curr = node.next.as_ref();
// Same implementation as from last week }
ks ¥
¥

pub fn push_back(&mut self, val: T) {
// Same implementation as from last week

¥

Conditionally defining methods on trait bounds

e Say we want to add a print() method. We need T to have Display, but we still
want the other methods to exist even if T doesn’t have Display

This works: This doesn’t work.
- print’ method exists for this LinkedList<String>, - Assuming MyType doesn’'t implement the display
because String implements the Display trait. trait, a LinkedList<MyType> cannot call print .

fn main() { fn main() {
let mut list = LinkedL1ist: :new(); let mut l1ist = LinkedL1ist: :new();
list.push_back("Hello world!".to_string()); list.push_back(MyType {});
list.print(); list.print();

} }

01 struct MyType{}
————————————— doesn't satisfy "MyType: std::fmt::Display"

96 list.print();
AAAAA method cannot be called on LinkedList<MyType>"
due to unsatisfied trait bounds

= note: the following trait bounds were not satisfied:
"MyType: std::fmt::Display

[Bonus slides: Not Covered]

What if we want to store different types in a
data structure together?

Not covering this year, but happy to talk about the dyn keyword and the differences between monomorphization and
dynamic dispatch, if you're interested.

More resources here (thanks to Phil Levis for pointing me to these!)
https.//www.youtube.com/watch?v=o0lM70_oYMLO
https.//stackoverflow.com/questions/66575869/what-is-the-difference-between-dyn-and-generics

https://www.youtube.com/watch?v=olM7o_oYML0
https://stackoverflow.com/questions/66575869/what-is-the-difference-between-dyn-and-generics

More on using traits

e So far, we’ve seen how to write different code that works for several different
types
o We can write functions that take objects implementing a specific trait (e.qg.
Display)
o This technigue uses monomorphization, where the compiler emits a new
function/method/struct/etc for every type parameter
e What if we want to store different objects together?
o E.g. what if we want to store different kinds of bears in a vector, all of which
implement Roar?
o This is a different kind of challenge, because the objects may be different sizes

Storing different types together

struct TeddyBear; struct RedTeddyBear { struct GreenTeddyBear {
candycane: CandyCane, cub: TeddyBear,
impl Roar for TeddyBear {} } }
impl Roar for RedTeddyBear {} impl Roar for GreenTeddyBear {

fn roar(&self) {
println!("DOUBLE ROAR!!");

e Naive attempt: Create a Vec<Roar>)
e But then the “slots” of the vector would need to be different sizes... ¥

my bears: Vec<Roar> = RedTeddyBear TeddyBear GreenTeddyBear TeddyBear (}Q

e Also, if we'’re looping through this vector, how do we know what roar() function to call? (There’s no type
information stored as part of a struct.)

Storing different types together

struct TeddyBear; struct RedTeddyBear { struct GreenTeddyBear {
candycane: CandyCane, cub: TeddyBear,
impl Roar for TeddyBear {} } }
impl Roar for RedTeddyBear {} impl Roar for GreenTeddyBear {

fn roar(&self) {
] ' FIRE intln!("DOUBLE ROAR!!");
e Instead, store a pointer to an object (Box or &) along with info y D
about what functions to call (iry it here) }

dynamic dispateh “ Xy Trait object | Trait object| Trait object | Trait object

my bears: VeC<BOX<dyn Roar>> = | pata Vtable Data Vtable | Data Vtable Data Vtable
RedTeddyBear vtable TeddyBear vtable GreenTeddyBear vtable
roar(): <standard Roar::roar> roar(): <standard Roar::roar> roar(): <GreenTeddyBear::roar>

RedTeddyBear

TeddyBear GreenTeddyBear TeddyBear

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=13bcf5666c34649203d6ef9415805183

'Bonus slides: Not Covered]

Reflecting on Traits vs. Inheritance

On different approaches for sharing code and/or
enforcing requirements across objects.
via Ryan Eberhardt.

Traits vs. Inheritance: thinking about tradeoffs

Ad-hoc do whatever you want,
what’'s decomposition???

D

Less repetition
Tighter coupling

Cleaner code
- Less repetition
- Can be easier to isolate the source of bugs

You don’'t want to be all the way over here — where

you've decomposed out every little possible thing.

- Get locked into a design; hard to adapt to changing
requirements, features

- Everything is tightly coupled and dependent: changes
In class A can break classes B, C, D.

More repetition
More flexibility

Tons of flexibility!

- Easy to change one part of your program

- Can be really helpful at the beginning of a
project: iterate, come up with a good design,
then decide how to break up the solution.

Don’t want to be over here
- Harder to isolate the source of bugs
- Very easy to introduce “copy and paste” bugs
- Hard for others to understand your code
- Makes your CS110 TA sad. (

Traits vs. Inheritance: thinking about tradeoffs

Just a guess of where these land

In terms of the tradeoffs: Ad-hoc do whatever you want,

Inheritance Traits what’'s decomposition???
<‘+~— 0>
Less repetition More repetition
Tighter coupling More flexibility

e Traditional OOP does a good job of decoupling code outside a class from the implementation inside the
class
o With good OOP design, if you need to change how a class is implemented in the future, no problem!
Keep the interface the same, change the internals
e With inheritance, child classes are often tightly coupled to the implementation of their parent classes
o Fraqgile Base Class problem: it becomes hard to change parent classes without breaking child classes
INn unexpected ways
e [raits are not “better”, but can be more flexible and lead to several unique patterns in Rust

https://www.infoworld.com/article/2073649/why-extends-is-evil.html
https://www.infoworld.com/article/2073649/why-extends-is-evil.html

