
Object Oriented
Programming in Rust: Traits

CS 110L

January 31, 2022

Logistics

● Reminder on participation:

○ Participation makes the class more engaging and effective for all of us

○ Part of the grade => incentivize you to think about and stay up-to-date

with the material

○ Attending class — asking and answering questions, contributing to

discussion, etc.

○ Slack — asking and answering questions, contributing to discussion, etc.

● Week 3 exercise were due! (Sample solutions released tomorrow.)

○ These are the most challenging exercises that we’ll do this quarter!
○ Thanks for attempting and sticking with it :)

Logistics

● Project 1 out next week! Build a debugger!

● You can work alone or in groups of 2-3

● Find project partners in class, and feel free to post in #proj1-partner-search

Slack channel

○ Next to channels, click `+` ->  

Browse channels ->  
search for “proj1-partner-search”

● Before pairing up, communicate with each other: What are your goals & ideal
outcomes for this project? How much time do you have to spend on it?

Object Oriented Programming in C++

Classes

● "Object" Oriented: Create an 'object' - movie database, and you can perform
methods on this object.

● You can create instances of objects, and each would have their own set of
variables. (Movie database with different files)

● Classes divided into public and private regions.

● public members can be accessible to anyone with reference to an instance

● private members only accessible to the implementer of the class

class imdb {
public:

imdb(const std::string& directory)
bool getCredits(...)

private:
/* Elements
const char* kActorFileName;

}

What are some advantages to
Classes?

Advantages to Class Design

● Modularity: We can break down a big system into manageable components
that provide clear interfaces and can be tested in isolation.

● Encapsulation: Group related data and methods together into a single
“object.”

● Code-Hiding: Don't need to expose parts of a class not needed for a user to
interact with it.

● Code-Reuse: Want an object to be different based on the file it takes in? Add
one parameter to its constructor, and suddenly you have two different
implementations, but just one class!

● Other things? What do you think?

Reusing code with “inheritance”

A bunch of slightly different types of teddy bears =
lots of repeated code!

class TeddyBear {
public:

TeddyBear(..);
void roar_sound();

}

class PurpleTeddyBear {
public:

TeddyBear(..);
void roar_sound();
void purple_button_song();

}

class RedTeddyBear {
public:

TeddyBear(..);
void roar_sound();
void red_button_song();

}

class PurpleTeddyBear {
public:

TeddyBear(..);
void roar_sound();
void green_button_song();

}

Inheritance

class TeddyBear {
public:

TeddyBear(..);
void roar_sound();

}

class RedTeddyBear {
public:

red_button_song();
}

class PurpleTeddyBear {
public:

purple_button_song();
}

class GreenTeddyBear {
public:

green_teddy_bear();
}

Lets take a look!

https://cplayground.com/?p=cobra-panther-lyrebird

Inheritance

● With Inheritance, we were able to use the same implementation of one
method across many different kinds of objects, brought together through a
parent-child relationship.

● Child subclasses inherit all methods and attributes. (constructors usually
don't count here, depending on the language). They can choose to override
parent functions (green bear roaring differently)

● Big concept in languages like Java (where everything inherits one base
Object class)

What might be the weaknesses of
Inheritance?

Inheritance Trees

A Change in DisplayObject could break
implementations for the entire tree!

Think about: maintaining and changing
a large codebase over time

Aside: Two Other Keywords

● Object composition

● Class A has instance variables of other class types.

● Ex: want to produce multiple kinds of stuffed animals. Define things like

“fur”, “feathers”, “claws”, “mouth”, etc., and compose them together into
more complex stuffed animals.

● Looser coupling; often a better choice than inheritance if possible

● Polymorphism

● Different underlying types/implementations share a single interface

● Ex: green bear inherits “roar” from (base) bear, but “roar” for green bear is

implemented differently.

Traits

How else can we decompose?

struct RedTeddyBear;

impl RedTeddyBear {
fn roar(&self) {

println!("ROAR!!");
}
fn red_button_song(&self){

/* Red Song */
}

}

struct TeddyBear;

impl TeddyBear {
fn roar(&self) {

println!("ROAR!!");
}

}

struct PurpleTeddyBear;

impl PurpleTeddyBear {
fn roar(&self) {

println!("ROAR!!");
}
fn purple_button_song(&self){

/* Purple Song */
}

}

struct GreenTeddyBear;

impl GreenTeddyBear {
fn roar(&self) {

println!("ROAR!!");
}
fn green_button_song(&self){

/* Green Song */
}

}

https://play.rust-lang.org/?
version=stable&mode=debug&edition
=2018&gist=da8b2ac99e2c386656cb10
3c277a014e

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=da8b2ac99e2c386656cb103c277a014e
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=da8b2ac99e2c386656cb103c277a014e
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=da8b2ac99e2c386656cb103c277a014e

Traits

RO
AR

Inject the code you want into the other classes! (Inject a
trait into them!)

Let's make our first trait!

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=924a5adcbd9f4ebc5437897334e4b521

Traits Overview

● With traits, you write code that can be injected into any existing structure.
(From TeddyBear to i32!) This code can have reference to self, so the code
can be dependent on the instance

● Trait methods do not need to be fully defined - you could define a function
that must be implemented when implementing a trait for a type. (Similar to
Java interfaces)

● Traits can specify functions/data instances should have, instead of just
getting many from another "parent".

● No more deep inheritance hierarchies. Just think: "Does this type implement
this trait?"

Background, if you’re interested:

https://blog.rust-lang.org/2015/05/11/traits.html

https://blog.rust-lang.org/2015/05/11/traits.html

Questions?

Big Standard Rust Traits

Traits to Know

● Copy: Will create a new copy of an instance, instead of moving ownership when using
assignment (=)

● Clone: Will return a new copy of an instance when calling the .clone() function on the method.

● Drop: Will define a way to free the memory of an instance - called when the instance reaches

the end of the scope.

● Display: Defines a way to format a type, and show it (used by println!)

● Debug: Similar to Display, though not meant to be user facing (Meant for you to debug your

types!)

● Eq: Defines a way to determine equality (defined by an equivalence relation) for two objects of

the same type.

● PartialOrd: Defines a way to compare instances (less than, greater than, less than or equal to,

etc.)

Lets implement a standard Trait!

Does not compile - clone() isn't defined
Clo
ne

Let's Inject Clone!

https://doc.rust-lang.org/std/clone/trait.Clone.html

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=461ce49daeae793b33604a1095ee208d
https://doc.rust-lang.org/std/clone/trait.Clone.html

Injecting Clone: recap

● You can implement any traits into any structure (as we did with Clone to
Point), so long as they are compatible (Drop is not compatible with Copy)

● You can use the Rust Documentation as a way to tell you which functions
need to be implemented, along with their parameter types.

● You can use #[derive(x,y,z..)] to derive traits. The Rust compiler will try to
implement the traits for you, if your structure satisfies some rules (given by
the documentation). IE: You can derive Clone if all members in the struct
already implement Clone.

https://doc.rust-lang.org/std/clone/trait.Clone.html

Next Time

● How can we write code that can accept many types?

● How can traits play a role in this?

[Bonus slides] Week 5 exercises

● Idea: defining types that represent different kinds of plants.

● They’ll all have custom implementations of traits like “water” and

“needs_watering.”

● We also will want to derive some helpful traits — e.g., printing out the current

state of the plant for debugging purposes.

Milestone: derive Debug

● Two common ways to print in Rust:

● Display: clean, easy representation

● Invoke with: println!("{}", object);

● Debug: meant to be more verbose, for debugging

● Invoke with: println!(“{:?}”, object);

● Can #derive Debug if all members are Debug

● (note: `usize` and `DateTime` are Debug)

● How would we do this here?

Milestone: functions -> traits

Both sometimes need water and can
be watered… this sounds like a

good candidate for a trait!

How might we formalize this?

Milestone: functions -> traits

Note: function signatures in `trait` def. must
match function signatures in `impl` block.

(I.e.: same names, same parameters.)

[Bonus slides] Traits IRL

Tock: Open-Source OS written in Rust

https://github.com/tock/tock/
https://github.com/tock/tock/blob/master/kernel/src/scheduler/round_robin.rs

● In 110, you’ve learned about how an OS component called the scheduler
“schedules” threads and processes (gives them time on CPU(s)).

● Multiple ways to implement this.

● Round robin = a popular scheduling implementation.

● Run one thread/process for a time slice, then move on to the next one.

● Like going around a circle of processes.

https://github.com/tock/tock/
https://github.com/tock/tock/blob/master/kernel/src/scheduler/round_robin.rs

https://github.com/tock/tock/
https://github.com/tock/tock/blob/master/kernel/src/scheduler/round_robin.rs

Generics (we’ll get to this next time)

What this means: this will work for

multiple different architectures (pieces

of hardware).

There’s a trait called “Scheduler”.

Multiple types implement “Scheduler.”

Here, we’re defining its specific

implementation for the RR scheduler.

Example:

All schedulers must choose
the NEXT process to run.

Here’s the custom
implementation for how the

Round Robin scheduler
does this!

[Bonus slides] Traits IRL

Tock: Open-Source OS written in Rust

‘a indicates “lifetime”.

Out of scope for us, but if
you’re interested, more here:

https://doc.rust-lang.org/rust-by-
example/scope/lifetime.html

https://github.com/tock/tock/
https://github.com/tock/tock/blob/master/kernel/src/scheduler/round_robin.rs
https://doc.rust-lang.org/rust-by-example/scope/lifetime.html
https://doc.rust-lang.org/rust-by-example/scope/lifetime.html

[Bonus slides] Project 1 starter code examples

[Bonus slides] Project 1 starter code examples

Want a custom implementation for displaying
a line of code when we’re debugging.

Nice human-readable format:

`file:line number`

