
Custom Types

CS110L

January 24th, 2022

Today & [probably part of] Wednesday

Let’s implement a linked list together!

Follow along

● Rust Playground: https://play.rust-lang.org

● Create your own Rust package locally:

○ Run in shell: cargo new --bin linked-list-example

■ linked-list-example = name of directory to create (whatever you want!)
■ More on creating new cargo packages here: https://doc.rust-lang.org/

cargo/commands/cargo-new.html
○ You can now open the `linked-list-example` directory and write your code

there! (in src/main.rs, as usual.)

https://play.rust-lang.org
https://doc.rust-lang.org/cargo/commands/cargo-new.html
https://doc.rust-lang.org/cargo/commands/cargo-new.html

Quick review: what’s a linked list?

val val val val val null

Group discussion:

● How would you go about implementing a Linked List class in C or C++?

○ What structs would you need?

○ What kinds of methods would you provide?

○ What would your test code look like?

○ In terms of memory errors we’ve been talking about, what could go

wrong?

● Based on what you know about Rust so far, what do you think will be

challenging about implementing a linked list in Rust?

Quick review: what’s a linked list?

val val val val val null

C++ :

struct Node {

 int value;

 Node* next;

}

int main() {

 Node* first = (Node*)malloc(sizeof(Node));

 first->value = 1;

 Node* second = (Node*)malloc(sizeof(Node));

 second->value = 2;

 first->next = second;

 /* do stuff (e.g., print the list) */

 free(first);

 free(second);

}

Defining structs in Rust (general syntax)

struct Person {

 name: String,

 location: String,

}

fn main() {

 let thea = Person { name: “thea”.to_string(),

 location: “Boulder Creek”.to_string() };

 println!(“{} lives in {}”, thea.name, thea.location);

}

Defining a Node in Rust…?

struct Node {

 value: i32,

 next: &Node, // not what we want! `&` does not create a pointer.

 // — it implements “borrowing”, which doesn’t

 // really apply here.

}

C++ :

struct Node {

 int value;

 Node* next;

}

struct Node {

 value: i32,

 next: Node, /* won’t work! recursive def. */

}

struct Node {

 value: i32,

 next: /* pointer to a node…? */

}

Box in Rust

● Create a Box

● Box goes on the heap

● Anything can go in the box

● Box owns whatever is in the box. When box

goes out of scope -> value in box destroyed.

● Same thing as unique_ptr in C++:

○ “A smart pointer that owns and managers
another object through a pointer and
disposes of that object when the
unique_ptr goes out of scope.”

https://doc.rust-lang.org/rust-by-example/std/box.html

https://en.cppreference.com/w/cpp/memory/unique_ptr

fn main() {

 let node = Box::new(Node {value: 1});

 println!(“{}”, node.value);

}

struct Node {

 value: i32,

}

Type: Box<Node>

Box in Rust

Node declared & allocated on heap• Variable `node` owns Box<Node>

• When `node` is no longer in use, Box is (automatically) destroyed

• Compiler inserts call to Box’s `drop` function

• When Box is destroyed, Node object is destroyed

Defining a Node in Rust: what do we need?

struct Node {

 value: i32,

 next: Box<Node>,

}

fn main() {

 let node = Box::new(Node {

 value: 1,

 next: /* equiv. of nullptr…?*/,

 });

}

Using a Node: one-element linked list

struct Node {

 value: i32,

 next: Box<Node>,

}

Throwback to Options

fn main() {

 let node = Box::new(Node {

 value: 1,

 next: None

 });

}

struct Node {

 value: i32,

 next: Option<Box<Node>>,

}

Could be Some or None

If Some, will contain Box<Node>

Last element in list?

`next` is None

This has made its way back into C++ — see std::optional

https://en.cppreference.com/w/cpp/utility/optional

Let’s make a longer list ~~~ take 1

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let second = Box::new(Node { value: 2, next: None });

 first.next = second;

}

struct Node {

 value: i32,

 next: Option<Box<Node>>,

}

does not compile

Reminder: we want to change `first`, so explicitly make it mutable

Let’s make a longer list ~~~ take 1

This SHOULD be an Option… but you’re giving me a Box?????

Let’s make a longer list ~~~ take 2

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let second = Box::new(Node { value: 2, next: None });

 first.next = Some(second);

}

struct Node {

 value: i32,

 next: Option<Box<Node>>,

}

Compiles!

// This is now Option<Box<Node>>

Let’s make an even longer list ~~ take 1

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 first.next = Some(second);

 second.next = Some(third);

}

struct Node {

 value: i32,

 next: Option<Box<Node>>,

}

does not compile

Let’s make an even longer list ~~ take 1

What’s going on here???

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 first.next = Some(second);

 second.next = Some(third);

}

first

1

owns

second

2

owns

third

3

owns

None None None

What’s going on here???

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 first.next = Some(second);

 second.next = Some(third);

}

first

1

owns

second

2

owns

third

3

owns

owns
Some None None

What’s going on here???

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 first.next = Some(second);

 second.next = Some(third);

}

first

1

owns

second

2

third

3

owns

owns

Ownership

transfers via

member of

struct!!

Some None None

What’s going on here???

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 first.next = Some(second);

 second.next = Some(third);

}

first

1

owns

second

2

third

3

owns

owns

Ownership

transfers to

member of

struct!!

Error — can no longer access Box<Node> via variable `second`

Some None None

“Chain of ownership”

● Implication: when `first` is dropped (destroyed):

○ First node of list is dropped,

○ …so Option (in Node struct) is dropped,

○ …so Box (in Option) is dropped,

○ …so second Node (in Box) is dropped.

● Everything is cleaned up :)

first

1

owns

second

2
owns

Some None

● …But we can’t use
`second` anymore to
access this node.

● These are the type of
issues that can get really
annoying in Rust :(

Let’s make an even longer list ~~ take 2

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third); // swap order of these lines

 first.next = Some(second); // use `second` to access node

 // before it loses ownership.

}

struct Node {

 value: i32,

 next: Option<Box<Node>>,

}

compiles

Let’s print the list!

C++ :

struct Node {

 int value;

 Node* next;

}

C++:

int main() {

 Node* first = (Node*)malloc(sizeof(Node));

 first->value = 1;

 Node* second = (Node*)malloc(sizeof(Node));

 second->value = 2;

 first->next = second;

 Node *curr = first;

 while (curr != NULL) {

 printf(“%d\n”, curr->value);

 curr = curr->next;

 }

 free(first);

 free(second);

}

goal: this, but in Rust…

How do we turn this into Rust?

● There are no “pointers” in Rust; what
type should `curr` be?

● We probably want `curr` to refer to the
`first` node to start with, but we don’t
want `first` to lose ownership of the
node. (We don’t want the list to get
freed once `curr` isn’t used anymore!)

● What’s the condition of our loop?
(How do we know when we’ve
reached the end?)

C++:

Node *curr = first;

while (curr != NULL) {

 printf(“%d\n”, curr->value);

 curr = curr->next;

}

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third);

 first.next = Some(second);

 let mut curr = /* something */;

}

Let’s print the list!

make `curr` mutable, because we’re
going to reassign it

https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third);

 first.next = Some(second);

 let mut curr = Some(&first);

}

Let’s print the list!

`curr` is an Option<&Box<Node>>

● Option: can be `Some` or None

○ Use `None` to indicate end of List

● &Box<Node>:

○ If Some: <&Box<Node>>

○ Want to take the Box by reference

(why might this be important?)

○ Box “contains” heap-allocated Node

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third);

 first.next = Some(second);

 let mut curr: Option<&Box<Node>> = Some(&first);

}

Let’s print the list!

Reminder: you can explicitly write in the
types of variables if you want to. Otherwise,
Rust compiler infers for us.

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third);

 first.next = Some(second);

 let mut curr = Some(&first);

 while curr.is_some() {

 // print value

 // update curr

 }

}

Let’s print the list!

`Option` has `is_some()` and `is_none()` methods.

We want to keep looping while `curr` has some value.

(Same logic as `while curr != NULL` in C++ example.)

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third);

 first.next = Some(second);

 let mut curr = Some(&first);

 while curr.is_some() {

 println!(“{}”, curr.value);

 // update curr

 }

}

Let’s print the list!

does not compile

`curr` is an Option — `.value` isn’t valid.

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third);

 first.next = Some(second);

 let mut curr = Some(&first);

 while curr.is_some() {

 println!(“{}”, curr.unwrap().value);

 // update curr

 }

}

Let’s print the list!

- if `curr` is Some, extract the value

- Otherwise, panic (crash the program)

- Here: pretty safe to assume `curr` is `Some`,

since we just checked on the previous line.

compiles!

Reminder/review: Option, enum, unwrap

● `curr` is an Option

● An Option is an `enum` defined in the Rust standard lib

○ An `enum` is a type that can take on a specific, finite
number of defined variants

○ In Rust, `enums` can store values.

● An Option can be `Some` or `None`

● If `Some`, it stores an object (here: &Box<Node>)

● `curr.unwrap()` means:

○ If `curr` is Some, return the thing inside of the Some

○ If `curr` is None, panic

println!(“{}”, curr.unwrap().value); Std Rust lib:

enum Option {

 Some(<T>),

 None,

}

Stores a value

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third);

 first.next = Some(second);

 let mut curr = Some(&first);

 while curr.is_some() {

 println!(“{}”, curr.unwrap().value);

 curr = curr.unwrap().next;

 }

}

Let’s print the list!

does not compile

• curr.unwrap() gives us a Node

• Node.next gives us Option<Box<Node>>

Why is this not what we want?

struct Node {

 value: i32,

 next: Option<Box<Node>>,

}

Introducing `as_ref()`

● Converts &Option<T> into Option<&T>

● If provided Option is None, returns None

● E.g.:

let mut curr = Some(&first);

while curr.is_some() {

 println!(“{}”, curr.unwrap().value);

 curr = (&curr.unwrap().next).as_ref();

}

• curr.unwrap().next gives us Option<Box<Node>>

• Applying & gives us (&Option<Box<Node>>)

• Applying as_ref() gives us Option<&Box<Node>>

• If curr.unwrap().next is None, as_ref() returns None

fn main() {

 let mut first = Box::new(Node { value: 1, next: None });

 let mut second = Box::new(Node { value: 2, next: None });

 let third = Box::new(Node { value: 3, next: None });

 second.next = Some(third);

 first.next = Some(second);

 let mut curr = Some(&first);

 while curr.is_some() {

 println!(“{}”, curr.unwrap().value);

 curr = (&curr.unwrap().next).as_ref();

 }

}

Let’s print the list!

compiles

Option<&Box<Node>>

Changing `curr`, illustrated

first

1

owns

curr

2ownsSome() None

&

option

Changing `curr`, illustrated

curr = curr.unwrap().next

Would give `curr` ownership of value
in this Node’s `next` member var

—> Option<Box<Node>>

first

1

owns

curr

2ownsSome() None

&

option

as_ref(): a [kinda bad] illustration

curr = &curr.unwrap().next

Would give `curr` a reference to the value
in this Node’s `next` member var

—> &Option<Box<Node>>

&

What we want is for `curr` to get an
option of a reference to this
Box<Node> object

—> Option<&Box<Node>>

first

1

owns

curr

2ownsSome() None

&

option

first

curr = (&curr.unwrap().next).as_ref()

&

1

owns

curr

2ownsSome() None

&

option

option
New option object is created

Initialized as Some

Value is &Box<Node>

as_ref(): a [kinda bad] illustration

first

curr = (&curr.unwrap().next).as_ref()

&

1

owns

curr

2ownsSome() None

option
old option object destroyed

`curr` reassigned

as_ref(): a [kinda bad] illustration

● Read the compiler error messages. They’re often helpful!

● `rustc --explain` for more info (sometimes helpful; sometimes overwhelming).

● Web search!! If you’re having an issue, someone else has had it too.

● I highly recommend the rust-analyzer plugin for your editor

○ See week 2 exercises handout. If working on myth, see week 3 exercises for
manual download instructions.

○ In addition to basic warnings and errors, rust-analyzer will show you what
compiler infers for variable types

Notes on writing Rust Code

https://rust-analyzer.github.io/manual.html#toctitle

Recap: new material [also in notes]

● You can define your own types/structs using this syntax:

● You can initialize a struct using this syntax:

struct MyType {

 field1: i32,

 field2: String,

}

let my_object = MyType { field1: 1, field2: “Hello”.to_string() };

● The Box type stores a pointer to heap-allocated memory.

● You can put anything inside of a Box

○ For example, a Box<u32> is a heap-allocated unsigned integer (probably
not something that makes sense to do, but you can)

○ A Box<Node> is a heap-allocated Node

● Box::new(...) allocates memory and initializes it to ...

● The Box drop (“destruction”) function frees the heap memory

○ Remember: call to drop will automatically be inserted by compiler when
variable that owns the Box is no longer in use

Recap: new material [also in notes]

● Option::as_ref

● Use if:

○ You have a reference to an Option with something inside (&Option<T>)

○ You want an Option containing a reference to that thing (Option<&T>)

● Given an &Option<T>, as_ref will:

○ Will “look” inside the Option that you have a reference to

○ If that Option is None, returns None

○ If that Option is Some, returns a new Option that is Some(reference to

contained object)

● You can implement equivalent functionality using a `match` expression on Option

types, but it’s a handy one-line trick :)

Recap: new material [also in notes]

So we have some nodes… can we make a [better] linked list?

● Goal: a `list` “class” with functions (push_front, pop_front, insert, etc.)

Example interface, in C++:

std::list<int> myList;

myList.push_front (200); // Create new Node with value 200; insert at head of list

myList.push_front (300); // Create new Node with value 300; insert at head of list

myList.pop_back (); // Remove & destroy last element of list

// etc.

Adapted from https://www.cplusplus.com/reference/list/list/

https://www.cplusplus.com/reference/list/list/

Create a new struct (we know how to do this!)

struct LinkedList {

 head: Option<Box<Node>>,

 length: usize, // optional, but may be helpful

}

Creating methods for a struct
struct LinkedList {

 head: Option<Box<Node>>,

 length: usize, // optional, but may be helpful

}

impl LinkedList {

 fn my_method() {

 // do stuff

 }

}

“Implementation block”.

All methods associated
with “LinkedList” go in here

Let’s make a constructor

● Unlike in C++, constructors are not a specific thing in Rust.

● Rust just has functions.

● By convention, we name “constructors”: new()

impl LinkedList {

 fn new() -> LinkedList {

 // create & return a LinkedList

 }

}

By convention, call this new()

Returns a new LinkedList

Let’s make a constructor

impl LinkedList {

 fn new() -> LinkedList {

 LinkedList { head: None, length: 0 }

 }

}

Reminder: syntax to create the struct

Reminder (see week 2 exercises): in Rust, you
can just put a returned value at the end of a
function to return it. You can specify `return`

(e.g., if you want to return early).

struct LinkedList {

 head: Option<Box<Node>>,

 length: usize,

}

Let’s make a constructor
impl LinkedList {

 fn new() -> LinkedList {

 LinkedList { head: None, length: 0 }

 }

}

fn main() {

 let list1 = LinkedList::new();

}

specify LinkedList::

struct LinkedList {

 head: Option<Box<Node>>,

 length: usize,

}

Let’s make a function: take 1

fn main() {

 let list1 = LinkedList::new();

 let len = list1.len();

}

Our goal

Let’s make a function: take 1

impl LinkedList {

 fn new() -> LinkedList {

 LinkedList { head: None, length: 0 }

 }

 fn len() -> usize {

 length

 }

}

does not compile

Let’s make a function: take 2

impl LinkedList {

 fn new() -> LinkedList {

 LinkedList { head: None, length: 0 }

 }

 fn len(&self) -> usize {

 self.length

 }

}

compiles!

Takes a parameter `self` — “the
specific object you are operating on.”

Here, taking an immutable reference to `self`

Let’s make a function: take 2
impl LinkedList {

 fn new() -> LinkedList {

 LinkedList { head: None, length: 0 }

 }

 fn len(&self) -> usize {

 self.length

 }

}

fn main() {

 let list1 = LinkedList::new();

 let len = list1.len();

} immutable reference to list1

implicitly passed as a parameter

Aside: why might we want to make
sure to pass a reference here, rather
than transferring ownership? What’s
the difference? Why might the latter
be impractical for the typical use
case of a linked list?

● Goal: `lst.front()` to return an immutable reference to the head of the list (frontmost
node), or None if list is empty

Let’s make another function: `front`

impl LinkedList {

 /* other methods */

 fn front(&self) -> Option<&Box<Node>> {

 (&self.head).as_ref()

 }

}

fn front(&self) -> Option<&Box<Node>> {

● We want this to be an Option, because it could be None (if the list is empty).

● We want &Box<Node>, because returning a reference is probably more practical than

transferring ownership (for example, if you’re iterating through a list).

(&self.head).as_ref()

● Throwback to `as_ref`: converts &Option<T> to Option<&T>

○ self.head is Option<Box<Node>>

○ &self.head is &Option<Box<Node>>

○ (&self.head).as_ref() gives us a new option, containing Box<Node>, or None if self.head is

None.

Let’s make another function: `front`

Recap: new material [also in notes]

● After defining a struct, you can define functions associated with it in an
implementation block:

struct MyType {

 field1: i32,

 field2: String,

}

impl MyType {

 fn my_method() {

 }

}

Recap: new material [also in notes]

● If one of these methods operates on an existing object (e.g., an existing
instantiation of MyType), you need a `self` parameter.

● The usual ownership, reference, mutability, etc. rules apply.

struct MyType {

 field1: i32,

 field2: String,

}

impl MyType {

 fn get_field1(&self) -> i32 {

 self.field1

 }

 fn set_field1(&mut self) {

 self.field1 = 1;

 }

}

Recap: new material [also in notes]

● By convention, we name the constructor method `new`

○ This is not a rule enforced by the language. It’s just a style convention.

● It doesn’t need a `self` parameter, because it’s not operating on an existing object.

struct MyType {

 field1: i32,

 field2: String,

}

impl MyType {

 fn new() -> MyType {

 MyType { field1: 1, field2: “hello”.to_string() }

 }

}

Notes:

● Note: CS110L is not a Rust class, and it’s *definitely* not an “implementing
data structures in Rust” class. (That would be its own huge topic.) The goal of
today was to offer a basic intro to object-oriented programming in Rust.

● The Rust book has a great chapter on Associated Functions & Methods

● Personal practice:

○ Can you expand our linked list implementation to more functions? Can
you implement `back`?

○ Can you modify `front` to return a mutable reference?

https://doc.rust-lang.org/rust-by-example/fn/methods.html

