Ownership Continued

CS110L

Jan 12, 2022

Logistics

e Solutions for week 1 exercises released! Give ‘em a read & put questions in Slack.
e \Week 2 exercises will be released today and will be due Tuesday
o Handout is on the website.
o You should have gotten an invitation from CS110L to join a repository on GitHub. It will
be called week2-yourSUNetID'.
= Starter code is here; submit by pushing to this repo.
o Please check that you got this, and let me know if you didn’t!
= |f you didn'’t fill out the intro form, you don’t have a repo. Fill out the form & let me
know on Slack.
= |f you’re not officially enrolled, you don’t have a repo. Message me on Slack & I'll
get you one.
e Reminder: no class on Monday; remote on Wednesday.

Today: more ownership & Rust!

Previously on 110L...

Ownership (From The Rust Book!)

Ownership Rules

First, let's take a look at the ownership rules. Keep these rules in mind as we work through the
examples that illustrate them:

e Each value in Rust has a variable that's called its owner.
e There can only be one owner at a time.
e When the owner goes out of scope, the value will be dropped.

Ownership (from Monday)

let julio = Bear::get();
let ryan = julio;

O

/\ g /I\
/\ /\

julio;

ryan;

Function calls transfer ownership (from Monday)

fn my_cool_bear_function(/* parameter */) {
// Do stuff
/|\ // Value (bear) will go out of scope - freed!
¥

/\ fn mainQ) {
\ let julio = Bear::get();
my_cool_bear_function(julio);
/* AThis transfers ownership to parameter in function */

/* julio no longer owns the toy D: Compiler wont let you
use 1t! */

Borrowing (from Monday)

Hey, | let julio = Bear::get(); Thank
my cool bear function, _ . o you, this means
you could BORROW this toy. my_cCoo0 -_bear_functlon(&jullo) you'll have to put the
Just give it back when you're | /* The julio variable can still be used here toy back when you're
done! done though!

to access the teddy bear! */

/|\
/\ / \

let julio = ... my_cool_bear_function(Bear: &Bear)

What does ownership look like In

memory”?

Ownership in Memory

let julio = "Hi,friends".to_string();

STACK HEAP
length = 10 H’
capacity = 10 I
data =
r

julio

Ownership in Memory

let julio = "Hi,friends"”.to_string();

STACK let ryan = julio;
length = 10 HEAP
julio |capacity = 10| A
data = I
length = 10 f
ryan |capacity = 10

data =

This is known as a shallow copy. The contents of the stack
is copied for the new variable. The heap contents is not.

Ownership in Memory

let julio = "Hi,friends"”.to_string();

STACK let ryan = julio;
legaith = HEAP
julio al
Tt
length = 10 f
ryan |capacity = 10|

data =

o . What might happen if we didn't stop 'julio’ from accessing the values in
~its copy of the string object?

Ownership in Memory

e \When we reach the end of a
scope (designated by curly-
braces), the Drop function is let ryan = julio:
called. ’

e You can think of this being a J
special function to properly free() T
the entire object (maybe multiple End of variable scope!
pointers to free, so the function Drop function called for
will have that implementation) variables owning values

e Similar to the destructor in C++

e J[ypes with the Rust Drop trait
have a Drop function to call
(more on traits soon!)

fn main() {
let julio = "Hi,friends".to_string(Q);

Ownership in Memory

let julio = "Hi,friends"”.to_string();
STACK let ryan = julio;

length = 10 HEAP

julio |capacity = 10

data =

length = 10

ryan |capacity = 10

What might happen if we didn't stop ‘julio’ from accessing the values in

data = JJ ' its copy of the string object? DOUBLE FREE D: D: D:

Ownership in Memory: Recap

e \We make shallow copies of variables when passing ownership, and we
Invalidate previous variables that no longer own the data.

e The invalidation is to prevent double-frees - much safer when we know
exactly who should call the Drop function.

e |[f you wanted to make a deep copy (create a new object with a copy of
the data on the heap), Rust has the clone function.

Clone function

let julio = "Hi,friends"”.to_string();
let ryan = julio.clone();

Now, julio and ryan have their own heap data!

Questions?

Ownership in Memory

let julio = 10;

STACK HEAP
?
-
julio 2
value = 10
?

Ownership in Memory

let julio = 10;
let ryan = julio

STACK HEAP
?
julio value = 10 ~
?
ryan value = 10 ?

@} What might happen if we don't stop 'julio’ from accessing the values in
t; /' its copy of the number object?

Ownership in Memory

julio

ryan

let julio = 10;
let ryan = julio

HEAP

STACK
value = 10
value = 10

'ﬁ Absolutely nothing - the heap is safe!

What's going on here”

e Some values in Rust do not make use of the heap, and are stored
directly on the stack. (integer types (u32), booleans, etc...)
o For these types, a “shallow copy” = a full copy

e (bjects that only require stack space are typically copied by default
when assigning variables
o Types with this property have the Copy trait.

= |nstead of transferring ownership, ‘=" operator for assignment
(e.g., let ryan = julio) will create a copy

e |f you have the Copy trait, Rust won’t let you implement a Drop trait

(why?)

Copy Trait Error

Compiling playground v@.0.1 (/playground)
error[E@382]: borrow of moved value: "julio
--> src/main.rs:5:17

2 let julio = "Hi friends".to_string();
----- move occurs because julio has type String ,(which does not implement the "Copy trait
3 let ryan = julio;

----- value moved here

5 println!("{}", julio);
annan yalue borrowed here after move

Without the Copy trait, Rust assumes ownership is moving!

Questions?

Borrowing++

Borrowing: Recap

let julio = Bear::get();
my_cool_bea r_functio 110)

/* The julio variable can still be used here! */

O

O
/|\ /|\
/' \ /' \

julio; my_cool_bear_function;

What are the rules behind the &7

Variables Rules In Rust

e All pieces of data, by default, are immutable in Rust.

e You can imagine that const is secretly behind every variable you
Instantiate.

e [he mut keyword specifies the data a variable owns to be mutable. It's
like the opposite const.

e T[he Rust Compiler will not compile your code if you change the data
owned by any variable that is not declared as mutable.

Mutable Variables

-l_e-t -l_s-t — Vec![l,z,B:l; -I.et mut 15t = V€C![1,2,3];
vec.push(4); vec.push(4);

‘Borrowing' creates a type!

let julio = Bear::get();
my_cool_bear_function(&julio)
/* The julio variable can still be used here! */

let julio = Bear::get();

let julio_reference = &julio;
my_cool_bear_function(julio_reference);

/* The julio variable can still be used here! */

'‘Borrowing Type" == References

e & creates a new variable let julio = Bear::get();
type, known as a let julio_reference = &julio;

reference to that type. my_cool_bear_function(julio_reference);
e Because these are new /* The julio variable can still be used here! */

variables, they too are
immutable by default, and
can be made mutable

with the mut keyword. let mut julio = Bear::get();
e Mutable references can let mutable_julio_reference = &mut julio;

only be made It the actual my_cool_bear_function(mutable_julio_reference);,

variable is also mutable /* The julio variable can still be used here! */

Code: Immutable + Mutable References

**does not compile™®

Function takes in a reference to a vector!

fn append_to_vector(lst: &Vec<u3Z>) {
Lst.push(3);

¥

fn main() {
let mut lst = vec![1,2,3];
append_to_vector(&lst);

¥

Main passes a reference to append to vector...

Code: Immutable + Mutable References

**compiles!™

But it must be a mutable reference since the vector is changed!

fn append_to_vector(lst:ec<u32>) {
Lst.push(3);

¥

fn main() {

let mut lst = vec! 2,3];
append_to_vectorl st);
Iy

Main must also pass a mutable reference through!

Borrowing + References: The Catch

let mut bear = Bear::get();

We want both painters to trust that the bear they
see won't change while they're trying to paint it!

let pink_shirt = &bear; let blue_shirt = &bear;

Borrowing + References: The Catch

n®

let pink_shirt = &bear; let blue_shirt = &bear; let evil_patrick = &mut bear;

Borrowing + References: The Catch

T

let mut bear = Bear::get();

let pink_shirt = &bear; let blue_shirt = &bear; let evil_patrick = &mut bear;

References Rules

e (Can have many immutable references for a variable in scope at a time.

e [hink that many painters can paint a picture of the bear, so long as they know no one will
change that bear while they’re painting.

e But can only have one mutable reference in scope at a time.

e (Otherwise, the immutable references might see different data than what they initially
expected, or two mutable reference’s changes might conflict.

OR &mut bear

References Rules

e (Can have many immutable references for a variable in scope at a time.
e But can only have one mutable reference in scope at a time.
e Note: if you create a reference, the original variable is:

e |[f reference is mutable: temporarily unusable

e |[f reference is immutable: (temporarily) immutable

&bear
&bear

&bear

&bear

OR &mut bear

orig. var
(iImmut.

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=64d8e83cbbd5429621e345157e857ea1

lterator Invalidation Avoided!

fn main() {
let mut v = vec![1, 2, 3];
/* This for loop borrows the vector above to do its work. */
for 1 1n &mut v {

println!("{}", 1);
v.push(34); /* can cause resize -> moving 1n memory! */

} } New Buffer
0ld buffi:////////’/\/ T~ 1
I — N 1 2
2 3
3 34

References Recap [End]

e With the ownership and borrowing rules, many different kinds of
memory errors are avoided :D

e But they do lead to trickier code to write - the Rust compiler will fight
with you as you write these programs

e [ake it slow, ask questions in the #guestions channel!

