
Ownership Continued

CS110L

Jan 12, 2022

Logistics

● Solutions for week 1 exercises released! Give ‘em a read & put questions in Slack.

● Week 2 exercises will be released today and will be due Tuesday

○ Handout is on the website.

○ You should have gotten an invitation from CS110L to join a repository on GitHub. It will

be called `week2-yourSUNetID`.

■ Starter code is here; submit by pushing to this repo.

○ Please check that you got this, and let me know if you didn’t!

■ If you didn’t fill out the intro form, you don’t have a repo. Fill out the form & let me

know on Slack.

■ If you’re not officially enrolled, you don’t have a repo. Message me on Slack & I’ll

get you one.

● Reminder: no class on Monday; remote on Wednesday.

Today: more ownership & Rust!

Previously on 110L...

Ownership (From The Rust Book!)

Ownership (from Monday)
let julio = Bear::get();
let ryan = julio;

julio; ryan;

Function calls transfer ownership (from Monday)

fn my_cool_bear_function(/* parameter */) {
// Do stuff
// Value (bear) will go out of scope — freed!

}

fn main() {
let julio = Bear::get();
my_cool_bear_function(julio);
/* ^This transfers ownership to parameter in function */

/* julio no longer owns the toy D: Compiler wont let you
use it! */

}

Borrowing (from Monday)
let julio = Bear::get();
my_cool_bear_function(&julio)
/* The julio variable can still be used here
 to access the teddy bear! */

let julio = ... my_cool_bear_function(Bear: &Bear)

Hey,
my_cool_bear_function,

you could BORROW this toy.
Just give it back when you're

done!

Thank
you, this means

you'll have to put the
toy back when you're

done though!

What does ownership look like in
memory?

Ownership in Memory

let julio = "Hi,friends".to_string();

length = 10

capacity = 10

data =

STACK

julio

'H'

'I'

','

HEAP

'f'

Ownership in Memory
let julio = "Hi,friends".to_string();
let ryan = julio;

length = 10

capacity = 10

data =

STACK

julio 'H'

'I'

','

HEAP

'f'
length = 10

capacity = 10

data =

ryan

This is known as a shallow copy. The contents of the stack

is copied for the new variable. The heap contents is not.

Ownership in Memory
let julio = "Hi,friends".to_string();
let ryan = julio;

length = 10

capacity = 10

data =

STACK

julio 'H'

'I'

','

HEAP

'f'
length = 10

capacity = 10

data =

ryan

What might happen if we didn't stop 'julio' from accessing the values in

its copy of the string object?

Ownership in Memory

fn main() {
let julio = "Hi,friends".to_string();
let ryan = julio;

}

End of variable scope!
Drop function called for
variables owning values

● When we reach the end of a
scope (designated by curly-
braces), the Drop function is
called.

● You can think of this being a
special function to properly free()
the entire object (maybe multiple
pointers to free, so the function
will have that implementation)

● Similar to the destructor in C++

● Types with the Rust Drop trait

have a Drop function to call
(more on traits soon!)

Ownership in Memory
let julio = "Hi,friends".to_string();
let ryan = julio;

length = 10

capacity = 10

data =

STACK

julio 'H'

'I'

','

HEAP

'f'
length = 10

capacity = 10

data =

ryan

DOUBLE FREE D: D: D:

💣

What might happen if we didn't stop 'julio' from accessing the values in

its copy of the string object?

Ownership in Memory: Recap

● We make shallow copies of variables when passing ownership, and we
invalidate previous variables that no longer own the data.

● The invalidation is to prevent double-frees - much safer when we know
exactly who should call the Drop function.

● If you wanted to make a deep copy (create a new object with a copy of
the data on the heap), Rust has the clone function.

Clone function
let julio = "Hi,friends".to_string();
let ryan = julio.clone();

julio; ryan;

Now, julio and ryan have their own heap data!

Questions?

Ownership in Memory

let julio = 10;

value = 10

STACK

julio

?

?

?

HEAP

?

Ownership in Memory

let julio = 10;
let ryan = julio

value = 10

STACK

julio

?

?

?

HEAP

?value = 10ryan

What might happen if we don’t stop 'julio' from accessing the values in

its copy of the number object?

Ownership in Memory

let julio = 10;
let ryan = julio

value = 10

STACK

julio

?

?

?

HEAP

?value = 10ryan

Absolutely nothing - the heap is safe!

What's going on here?

● Some values in Rust do not make use of the heap, and are stored
directly on the stack. (integer types (u32), booleans, etc…)

○ For these types, a “shallow copy” = a full copy

● Objects that only require stack space are typically copied by default
when assigning variables

○ Types with this property have the Copy trait.

■ Instead of transferring ownership, ‘=‘ operator for assignment

(e.g., `let ryan = julio`) will create a copy

● If you have the Copy trait, Rust won’t let you implement a Drop trait

(why?)

Copy Trait Error

Without the Copy trait, Rust assumes ownership is moving!

Questions?

Borrowing++

Borrowing: Recap
let julio = Bear::get();
my_cool_bear_function(&julio)
/* The julio variable can still be used here! */

julio; my_cool_bear_function;

What are the rules behind the &?

Variables Rules in Rust

● All pieces of data, by default, are immutable in Rust.

● You can imagine that const is secretly behind every variable you

instantiate.

● The mut keyword specifies the data a variable owns to be mutable. It's

like the opposite const.

● The Rust Compiler will not compile your code if you change the data

owned by any variable that is not declared as mutable.

Mutable Variables

let lst = vec![1,2,3];
vec.push(4);

let mut lst = vec![1,2,3];
vec.push(4);

'Borrowing' creates a type!

let julio = Bear::get();
my_cool_bear_function(&julio)
/* The julio variable can still be used here! */

let julio = Bear::get();
let julio_reference = &julio;
my_cool_bear_function(julio_reference);
/* The julio variable can still be used here! */

"Borrowing Type" == References

let julio = Bear::get();
let julio_reference = &julio;

my_cool_bear_function(julio_reference);
/* The julio variable can still be used here! */

● & creates a new variable
type, known as a
reference to that type.

● Because these are new
variables, they too are
immutable by default, and
can be made mutable
with the mut keyword.

● Mutable references can
only be made if the actual
variable is also mutable

let mut julio = Bear::get();
let mutable_julio_reference = &mut julio;

my_cool_bear_function(mutable_julio_reference);
/* The julio variable can still be used here! */

Code: Immutable + Mutable References

fn append_to_vector(lst: &Vec<u32>) {
 lst.push(3);
}

fn main() {
 let mut lst = vec![1,2,3];
 append_to_vector(&lst);
}

Function takes in a reference to a vector!

Main passes a reference to append_to_vector...

does not compile

Code: Immutable + Mutable References

fn append_to_vector(lst: &mut Vec<u32>) {
 lst.push(3);
}

fn main() {
 let mut lst = vec![1,2,3];
 append_to_vector(&mut lst);
}

But it must be a mutable reference since the vector is changed!

Main must also pass a mutable reference through!

compiles!

Borrowing + References: The Catch

let mut bear = Bear::get();

let pink_shirt = &bear; let blue_shirt = &bear;

We want both painters to trust that the bear they

see won’t change while they’re trying to paint it!

Borrowing + References: The Catch

let mut bear = Bear::get();

let pink_shirt = &bear; let blue_shirt = &bear; let evil_patrick = &mut bear;

Borrowing + References: The Catch

let mut bear = Bear::get();

let pink_shirt = &bear; let blue_shirt = &bear; let evil_patrick = &mut bear;

References Rules

● Can have many immutable references for a variable in scope at a time.

● Think that many painters can paint a picture of the bear, so long as they know no one will

change that bear while they’re painting.
● But can only have one mutable reference in scope at a time.

● Otherwise, the immutable references might see different data than what they initially

expected, or two mutable reference’s changes might conflict.

&bear

&bear

&bear &bear
OR &mut bear

References Rules

● Can have many immutable references for a variable in scope at a time.

● But can only have one mutable reference in scope at a time.

● Note: if you create a reference, the original variable is:

● If reference is mutable: temporarily unusable

● If reference is immutable: (temporarily) immutable

&bear
&bear

&bear &bear
OR &mut bear

orig. var

(immut.)

Code Example

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=64d8e83cbbd5429621e345157e857ea1

Iterator Invalidation Avoided!
fn main() {
 let mut v = vec![1, 2, 3];
 /* This for loop borrows the vector above to do its work. */
 for i in &mut v {
 println!("{}", i);
 v.push(34); /* can cause resize -> moving in memory! */

}
}

1

2

3

v
Old buffer 1

2

3

New Buffer

34

i

References Recap [End]

● With the ownership and borrowing rules, many different kinds of
memory errors are avoided :D

● But they do lead to trickier code to write - the Rust compiler will fight
with you as you write these programs

● Take it slow, ask questions in the #questions channel!

