Welcome to CS 110L ¥

Thea Rossman

Winter 2022

Today

e Quick intros
e Why are we here? (issues motivating the class)
e About & plans for the course

e Zoom norms:
o Please enable video (if you have one)
o Try to mute yourself when not speaking
o Please ask and answer questions! Feel free to just unmute, but chat is
fine if you can't do that.

Who are we?

This course and all material were put together by Ryan Eberhardt and
Armin Namavari, with support from Will Crichton and Julio Ballista

Thea (pronounced thee-uh)

e MS/coterm focused on computer networking and systems

e |Interest in the Internet / systems grew from CS110 & CS144; + being
adjacent to community broadband projects; interest in security grew from
being adjacent to social movement organizations navigating surveillance,
doxxing, infiltration, etc.

e Knows about systems & teaching systems. Rust newbie.

Who are you?

e Put in the chat...
o Your name
o What you're studying OR one fun fact about yourself
o (Optionally) one thing that intrigues you about the class

Why are we here?

“Convert a String to Uppercase in C,” taken VERBATIM from

#include <stdio.h>
#include <string.h>
int main() {
char s[100];
int i;
printf("\nEnter a string : ");
gets(s);
for (i = 0; s[i]!="\0"; i++) {
if(s[i] >= 'a' && s[i] <= '
s[i] = s[i] -32;

z') {

}
}

printf("\nString in Upper Case = %s", s);
return 0;

https://www.tutorialspoint.com/convert-a-string-to-uppercase-in-c

From the documentation:

man gets

gets() reads a line from stdin into the buffer
pointed to by s until either a terminating
newline or EOF, which it replaces with a null
byte (ag\O0aqg). No check for buffer overrun is
performed (see BUGS below).

Never use gets(). Because it is impossible to tell without knowing the data in advance how many
characters gets() will read, and because gets() will continue to store characters past the end of the
buffer, it is extremely dangerous to use. It has been used to break computer security. Use fgets() instead.

https://linux.die.net/man/3/gets

Anatomy of a Stack Frame

High addresses
; push call arguments, in reverse ...previous stuff ...
push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer
...do stuff...
mov esp, ebp
pop ebp ; restore old call frame
ret ; return)
Local variables
add esp, 12 ; remove call arguments from frame
Low addresses

From https://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer

...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer
...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee:
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame

...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...
push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’

callee:

push ebp ; save old call frame

mov ebp, esp ; initialize new call frame

...do stuff...

mov esp, ebp

pop ebp ; restore old call frame

ret ; return

g

Low addresses

(circa 1988)

int main(int argc, char *argv[]) {
char line[512];
struct sockaddr in sinj;
int i, p[2], pid, status;

i = sizeof (sin);
if (getpTermsge(0, &sin, &i) < 0) fatal(argv[0], "getpeername");
if== NULL) exit(1);
regi edraT *sp = line;
if ((pid = fork()) == 0) {
close(p[0]);
if (p[l] !=1) {

dup2(p[1l], 1);
close(p[1l]);
}
execv("/usr/ucb/finger", av);
_exit(1l);
}

https://en.wikipedia.org/wiki/Morris_worm

“Convert a String to Uppercase in C,” circa 2021

#include <stdio.h>
#include <string.h>
int main() {

char s[100];

int i;
0 Li-R “\nEnter a string : ");
QL s[i1!="\0"; i++) {
if(s[i] >= 'a' && s[i] <= "z'") {
s[i] = s[i] -32;
}

}

printf("\nString in Upper Case = %s", s);
return 0;

Okay, well, I'd know better.

Professional engineers don’t make such silly mistakes, right?

Comprehensive Experimental Analyses of Automotive Attack Surfaces

Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, and Stefan Savage
University of California, San Diego

Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno
University of Washington

Abstract
Modern automobiles are pervasively computerized, and
hence potentially vulnerable to attack. However, while
previous research has shown that the internal networks
within some modern cars are insecure, the associated
threat model —requiring prior physical access— has

This situation suggests a significant gap in knowledge,
and one with considerable practical import. To what ex-
tent are external attacks possible, to what extent are they
practical, and what vectors represent the greatest risks?
Is the etiology of such vulnerabilities the same as for
desktop software and can we think of defense in the same

“Like many modern cars, our car’s cellular capabilities facilitate a variety of safety and
convenience features (e.q. the car can automatically call for help if it detects a crash).
However, long-range communication channels also offer an obvious target for potential
attackers...”

The car has a 3G modem, but 3G service isn’t available everywhere (this was especially
true in 2011, when the paper was written). As such, the car also has an analog audio
modem with an associated telephone number! “To synthesize a digital channel in this

environment, the manufacturer uses Airbiquity’s agLink software modem to covert
between analog waveforms and digital bits.”

“As mentioned earlier, the aqLink code explicitly supports packet sizes up to 1024 bytes.
However, the custom code that glues aqLink to the Command program assumes that
packets will never exceed 100 bytes or so (presumably since well-formatted command
messages are always smaller)”

“We also found that the entire attack can be implemented in a completely blind
fashion — without any capacity to listen to the car’s responses. Demonstrating this, we
encoded an audio file with the modulated post-authentication exploit payload and
loaded that file onto an iPod. By manually dialing our car on an office phone and then
playing this “song” into the phone’s microphone, we are able to achieve the same
results and compromise the car.”

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

buffer overflow

Q Al (3 Videos [&)Images [7J Books (& News : More

~ K TechRadar
Apache HTTP Server fixes crucial security flaws

The first flaw is a memory-related buffer overflow that affects Apache HTTP
Server 2.4.5.1 and earlier versions while the second flaw can be...

1 week ago

SB Security Boulevard
5 Vulnerabilities in Medical Devices That Can Create Chaos

A buffer overflow takes place when the volume of data exceeds the memory
buffer's storage capacity. Consequently, the program trying to write...

5 days ago

B Duo Security
Mozilla Fixes Critical Flaw in NSS Crypto Library

Although the vulnerability itself is a common buffer overflow and the exploitablt
code has been in NSS since 2012, none of internal testing...

1 month ago

Help Net Security
It's time to patch your SonicWall SMA 100 series appliances

CVE-2021-20043 is also a heap-based buffer overflow and it received a
CVSSva3 score of 8.8, but it requires authentication to exploit. For all...

3 weeks ago

F_Forbes
Google Confirms 16th Zero-Day Chrome Hack, Issues
Critical Update

Heap buffer overflow flaws also remain a popular route of attack. Also known
as 'Heap Smashing’, memory on the heap is dynamically allocated...

2 weeks ago

H| The Hacker News

Latest Apple iOS Update Patches Remote Jailbreak Exploit
for iPhones

NI SON4 2NOO2: A b rffar

|H| The Hacker News
Garrett Walk-Through Metal Detectors Can Be Hacked
Remotely

... CVE-2021-21905, and CVE-2021-21906 (CVSS scores: 8.2) - Stack-based
buffer overflow vulnerabilities that can be triggered by sending a...

5 days ago

[H| The Hacker News
Over 300,000 MikroTik Devices Found Vulnerable to Remote
Hacking Bugs

... traversal vulnerability in the WinBox interface; CVE-2018-7445 (CVSS
score: 9.8) - MikroTik RouterOS SMB buffer overflow vulnerability.

3 weeks ago

Threatpost
Apple iOS Update Fixes Cringey iPhone 13 Jailbreak Exploit

CVE-2021-30993: A buffer overflow issue that could allow an attacker in a
privileged network position to execute arbitrary code.

2 weeks ago

Threatpost

Actively Exploited Microsoft Zero-Day Allows App Spoofing ...

“An attacker could cause a buffer overflow that would leading to

unauthenticated non-sandboxed code execution, even if the EFS service isn't...

2 weeks ago

|[H The Hacker News
Eltima SDK Contain Multiple Vulnerabilities Affecting Several
Cloud Service Provides

sys" — leading to a buffer overflow scenario that could result in the execution
of arbitrary code with kernel-mode privileges. BSoD Proof Of...

3 weeks ago

SB Security Boulevard
NETGEAR meltdown: CVE-2021-34991 “Pre-Authentication
Buffer Overflow”

NETGEAR meltdown: CVE-2021-34991 “Pre-Authentication Buffer Overflow".
by Davi Ottenheimer on November 19, 2021. A serious and fresh vulnerability...

1 month ago

101 Times of India
If you use Photoshop, Lightroom or these Adobe apps, you
are under ‘high’ risk

The warning further reveals that these vulnerabilities exist in Adobe products
due to use-after-free flaw, out-of-bounds read, buffer overflow,...

1 week ago

B MSPoweruser

Microsoft Edge Stable updated to version 96.0.4664.93 with
security fixes - MSPoweruser

CVE20214055 Heap buffer overflow in extensions. CVE20214054 Incorrect
security Ul in autofill. CVE20214053 Use after free in Ul

3 weeks ago

B2 Global Security Mag

Vigil@nce - Vigil@nce - OpenSC : buffer overflow via pkcs15 ...

Vigil@nce - Un attaquant peut provoquer un buffer overflow de OpenSC, via pkcs15-oberthur.c, afin

de mener un déni de service,...

VAEVRE

< Gooooooooooogle >

Previous 12345678910MN1

Next

Search CVE List

You can search the CVE List for a CVE Recor
the relevant CVE Records.

View the search tips.

buffer overflow

h CVE List Downloads Data Feeds Update a CVE Record

TOTAL CVE Records: 166954

Request CVE IDs

ransition to the all-new CVE website at www.cve.org is underway and will last up to one year. (details)

Search Results

|There are 12417 CVE Records that match your search.

Name
CVE-2021-45959

CVE-2021-45958
CVE-2021-45957
CVE-2021-455956
CVE-2021-45955
CVE-2021-45554
CVE-2021-45953
CVE-2021-45952
CVE-2021-45951
CVE-2021-455949
CVE-2021-45548
CVE-2021-45943

Description

{fmt} 7.1.0 through 8.0.1 has a stack-based buffer overflow in fmt::v8::detail::dragonbox::umul192_upper64 (called from
fmt::v8::detail: :dragonbox: :cache_accessor<double>::compute_mul and fmt::v8::detail: :dragonbox: :decimal_fp<double> fmt::v8::detail::dr.

UltraJSON (aka ujson) 4.0.2 through 5.0.0 has a stack-based buffer overflow in Buffer_AppendIndentUnchecked (called from encode).

Dnsmasq 2.86 has a heap-based buffer overflow in answer_request (called from FuzzAnswerTheRequest and fuzz_rfc1035.c).

Dnsmasq 2.86 has a heap-based buffer overflow in print_mac (called from log_packet and dhcp_reply).

Dnsmasq 2.86 has a heap-based buffer overflow in resize_packet (called from FuzzResizePacket and fuzz_rfc1035.c).

Dnsmasq 2.86 has a heap-based buffer overflow in extract_name (called from answer_auth and FuzzAuth).

Dnsmasq 2.86 has a heap-based buffer overflow in extract_name (called from hash_questions and fuzz_util.c).

Dnsmasq 2.86 has a heap-based buffer overflow in dhcp_reply (called from dhcp_packet and FuzzDhcp).

Dnsmasq 2.86 has a heap-based buffer overflow in check_bad_address (called from check_for_bogus_wildcard and FuzzCheckForBogusWildcard
Ghostscript GhostPDL 9.50 through 9.54.0 has a heap-based buffer overflow in sampled_data_finish (called from sampled_data_continue and in
Open Asset Import Library (aka assimp) 5.1.0 and 5.1.1 has a heap-based buffer overflow in _m3d_safestr (called from m3d_load and Assimp::
GDAL 3.3.0 through 3.4.0 has a heap-based buffer overflow in PCIDSK::CPCIDSKFile::ReadFromFile (called from PCIDSK::CPCIDSKSegment::R

void ares_create_query(const char *name, int dnsclass)

unsigned char *q;
const char *p;

* Compute the length of the encoded name so we can check buflen. *
int len = 0;
for (p = name; *p; p++)

{

if ()p == "\\' && *(p + 1) != 0)

ptt;

len++;
}
#* If there are n periods in the name, there are n + 1 lab , and
* thus n + 1 length fie ty or with a
* i So ad or ends with a period.
*

if (*name && *(p - 1) != ".") | fa]se if name ends with \.
len++;

#* +1 for dnsclass below #*
q = malloc(len + 1);

while (*name)

{
q++ = / ... label length, calculation omitted for brevity *
for (p = name; *p && *p != '.'; p++)
{
if (*p == "\\' & *(p + 1) != 0)
pt+;
*qtt+ = *p;
}
* Go to the next label and repeat, unless we hit the end. *
if (1#p)
break;
name = p + 1;
}

|*q = dnsclass & Oxff;| overflows one byte

¥

One-byte overflow in Chrome OS:
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

Spot the overflow

char buffer[128];

int bytesToCopy = packet.length;
if (bytesToCopy < 128) {

strncpy(buffer, packet.data, bytesToCopy);
}

Spot the overflow

char buffer[128];

int bytesToCopy = packet.length;

if (bytesToCopy < 128) { ¢/ Proper bounds check
strncpy(buffer, packet.data, bytesToCopy);

}

/ Use of strncpy (avoiding unsafe strcpy)

Spot the overflow

Signed har buffer[128];
pytesToCopy = packet.length;

1f (bytesToCopy < 128) {

strncpy(buffer, packet.data,(bytesToCopy))

Cast to size_t (unsigned)

}

How can we find and/or prevent

problems like this?

This is the topic of this whole class :)

How can we find and/or prevent problems like this?

e Dynamic analysis: Run the program, watch what it does, and look for
problematic behavior [more in next lecture!]

e Static analysis: read the source code and try to spot the issues [more in next
lecture!]

e \Write code differently: create habits and frameworks that make it harder to
produce these kinds of mistakes [more throughout the class!]

e Sandbox: accept that these issues will happen, but try to minimize the
consequences [more in future lecture on browsers!]

How can we find and/or prevent problems like this?

e Dynamic analysis: Run the program, watch what it does, and look for

problematic behavior [more in next lecture!]
o What if the problematic behavior occurs in some edge case that
doesn't show up in testing?

e Static analysis: read the source code and try to spot the issues [more in next
lecturel]

e \Write code differently: create habits and frameworks that make it harder to
produce these kinds of mistakes [more throughout the class!]

e Sandbox: accept that these issues will happen, but try to minimize the
consequences [more in future lecture on browsers!]

How can we find and/or prevent problems like this?

e Dynamic analysis: Run the program, watch what it does, and look for
problematic behavior [more in next lecture!]
e Static analysis: read the source code and try to spot the issues [more in next
lecture!]
o So you think you can spot every issue ever?
o (It's mathematically provable that you can't.)
e \Write code differently: create habits and frameworks that make it harder to
produce these kinds of mistakes [more throughout the class!]
e Sandbox: accept that these issues will happen, but try to minimize the
consequences [more in future lecture on browsers!]

How can we find and/or prevent problems like this?

e Dynamic analysis: Run the program, watch what it does, and look for problematic
behavior [more in next lecture!]

e Static analysis: read the source code and try to spot the issues [more in next lecturel]
Write code differently: create habits and frameworks that make it harder to produce
these kinds of mistakes [more throughout the class!]

o This is where Rust -- and thinking about the philosophy / design choices
behind Rust -- comes in.
o Possibly makes programming harder? Need to re-train engineers?

e Sandbox: accept that these issues will happen, but try to minimize the

consequences [more in future lecture on browsers!]
o Equally important!

About CS 110L ¥

Course outline

e Key question: How can we prevent common mistakes in systems
programming?

This is not a Rust class, although almost all of our programming will be
done in Rust

How do we find and prevent common mistakes in C/C++?

How does Rust’s type system prevent common memory safety errors?
How do you architect good code?

Avoiding multiprocessing pitfalls

Avoiding multithreading pitfalls

Putting all of this into practice: Networked systems

Course outline

e Corequisite: CS 110
e Pass/fall
e You will get out what you put in
e Components:
e Lecture
e Weekly exercises (40%)
e Two projects (40%)
e Participation (20%)
= Coming to & participating in lecture
= Asking/answering questions on Slack

Missing classes

Class is officially in-person (if we can do so in a safer way)
Communicate with me! Email or Slack.

If we need a more rigorous hybrid option, I'll try to make one work
We have recordings of lectures from previous quarters

Happy to give extensions

Projects

e Project 1: Mini GDB

e Project 2: High-performance web server

e Functionality grading only

e The Rust compiler will be your interactive style grader!

e These projects are intended to give you additional experience in building real
systems, while having to think about some of the safety issues we’re
discussing. These may seem intimidating, but they really aren't!

e \Working in groups is encouraged!

e Have a different idea? Let me know!

Exercises

e Each week (ish), there will be small programming problems to reinforce the
week’s lecture material

e Expected time: 1-3 hours

e In addition, you’ll be asked occasionally to complete an anonymous survey

about how the class is going and how we/l can improve

Work for Wednesday

Fill out this intro form: https://forms.qgle/gjep8hA4J637amC5A
Join the Slack (Canvas sidebar -> Slack -> Join. All communication will be therel!)

(Slides will be posted on website shortly after class.)

https://forms.gle/gjep8hA4J637amC5A

