
Welcome to CS 110L 👋

Thea Rossman

Winter 2022



Today

● Quick intros

● Why are we here? (issues motivating the class)

● About & plans for the course


● Zoom norms:  
○ Please enable video (if you have one) 
○ Try to mute yourself when not speaking 
○ Please ask and answer questions! Feel free to just unmute, but chat is 

fine if you can't do that. 



Who are we?



This course and all material were put together by Ryan Eberhardt and 

Armin Namavari, with support from Will Crichton and Julio Ballista 



Thea (pronounced thee-uh)

● MS/coterm focused on computer networking and systems

● Interest in the Internet / systems grew from CS110 & CS144; + being 

adjacent to community broadband projects; interest in security grew from 
being adjacent to social movement organizations navigating surveillance, 
doxxing, infiltration, etc. 


● Knows about systems & teaching systems. Rust newbie.  



Who are you?

● Put in the chat...

○ Your name

○ What you're studying OR one fun fact about yourself

○ (Optionally) one thing that intrigues you about the class



Why are we here?



“Convert a String to Uppercase in C,” taken VERBATIM from Tutorials Point

#include <stdio.h>
#include <string.h>
int main() {
   char s[100];
   int i;
   printf("\nEnter a string :  ");
   gets(s);
   for (i = 0; s[i]!='\0'; i++) {
      if(s[i] >= 'a' && s[i] <= 'z') {
         s[i] = s[i] -32;
      }
   }
   printf("\nString in Upper Case = %s", s);
   return 0;
}

https://www.tutorialspoint.com/convert-a-string-to-uppercase-in-c


From the documentation: https://linux.die.net/man/3/gets

https://linux.die.net/man/3/gets


Anatomy of a Stack Frame

… previous stuff …

Function parameters

Return address

Saved base pointer

Local variables

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...
    mov     esp, ebp
    pop     ebp       ; restore old call frame
    ret               ; return

add     esp, 12  ; remove call arguments from frame

From https://en.wikipedia.org/wiki/X86_calling_conventions#cdecl



Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...

Saved base pointer

Return address

Local variables



Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...

Saved base pointer

Return address

Local variables



Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...

Saved base pointer

Return address

Local variables



Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...

Saved base pointer

Return address

Local variables

    mov     esp, ebp
    pop     ebp       ; restore old call frame
    ret               ; return

💣😓



Morris Worm (circa 1988)
int main(int argc, char *argv[]) {
  char line[512];
  struct sockaddr_in sin;
  int i, p[2], pid, status;
  i = sizeof (sin);
  if (getpeername(0, &sin, &i) < 0) fatal(argv[0], "getpeername");
  if (gets(line) == NULL) exit(1);
  register char *sp = line;
  ...
  if ((pid = fork()) == 0) {
    close(p[0]);
    if (p[1] != 1) {
      dup2(p[1], 1);
      close(p[1]);
    }
    execv("/usr/ucb/finger", av);
    _exit(1);
  }
  ...
}

https://en.wikipedia.org/wiki/Morris_worm


“Convert a String to Uppercase in C,” circa 2021

#include <stdio.h>
#include <string.h>
int main() {
   char s[100];
   int i;
   printf("\nEnter a string :  ");
   gets(s);
   for (i = 0; s[i]!='\0'; i++) {
      if(s[i] >= 'a' && s[i] <= 'z') {
         s[i] = s[i] -32;
      }
   }
   printf("\nString in Upper Case = %s", s);
   return 0;
}



Okay, well, I'd know better.


Professional engineers don’t make such silly mistakes, right?





“Like many modern cars, our car’s cellular capabilities facilitate a variety of safety and 
convenience features (e.g. the car can automatically call for help if it detects a crash). 

However, long-range communication channels also offer an obvious target for potential 
attackers…”

The car has a 3G modem, but 3G service isn’t available everywhere (this was especially 
true in 2011, when the paper was written). As such, the car also has an analog audio 
modem with an associated telephone number! “To synthesize a digital channel in this 

environment, the manufacturer uses Airbiquity’s aqLink software modem to covert 
between analog waveforms and digital bits.”



“As mentioned earlier, the aqLink code explicitly supports packet sizes up to 1024 bytes. 
However, the custom code that glues aqLink to the Command program assumes that 

packets will never exceed 100 bytes or so (presumably since well-formatted command 
messages are always smaller)”

“We  also  found  that  the  entire  attack  can  be  implemented  in  a  completely  blind  
fashion — without  any capacity to listen to the car’s responses. Demonstrating this,  we  
encoded  an  audio  file  with  the  modulated post-authentication exploit payload and 

loaded that file onto an iPod.  By manually dialing our car on an office phone  and  then  
playing  this  “song”  into  the  phone’s microphone, we are able to achieve the same 

results and compromise the car.”

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

http://www.autosec.org/pubs/cars-usenixsec2011.pdf






One-byte overflow in Chrome OS:

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html


Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
    strncpy(buffer, packet.data, bytesToCopy);
}



Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
    strncpy(buffer, packet.data, bytesToCopy);
}

Proper bounds check

Use of strncpy (avoiding unsafe strcpy)



Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
    strncpy(buffer, packet.data, bytesToCopy);
}

Signed

Cast to size_t (unsigned)



How can we find and/or prevent 
problems like this?

This is the topic of this whole class :)



How can we find and/or prevent problems like this?

● Dynamic analysis: Run the program, watch what it does, and look for 
problematic behavior [more in next lecture!]


● Static analysis: read the source code and try to spot the issues [more in next 
lecture!]


● Write code differently: create habits and frameworks that make it harder to 
produce these kinds of mistakes [more throughout the class!]


● Sandbox: accept that these issues will happen, but try to minimize the 
consequences [more in future lecture on browsers!]



How can we find and/or prevent problems like this?

● Dynamic analysis: Run the program, watch what it does, and look for 
problematic behavior [more in next lecture!] 
○ What if the problematic behavior occurs in some edge case that 

doesn't show up in testing?

● Static analysis: read the source code and try to spot the issues [more in next 

lecture!] 
● Write code differently: create habits and frameworks that make it harder to 

produce these kinds of mistakes [more throughout the class!]

● Sandbox: accept that these issues will happen, but try to minimize the 

consequences [more in future lecture on browsers!]



How can we find and/or prevent problems like this?

● Dynamic analysis: Run the program, watch what it does, and look for 
problematic behavior [more in next lecture!] 

● Static analysis: read the source code and try to spot the issues [more in next 
lecture!] 
○ So you think you can spot every issue ever? 

○ (It's mathematically provable that you can't.) 

● Write code differently: create habits and frameworks that make it harder to 
produce these kinds of mistakes [more throughout the class!]


● Sandbox: accept that these issues will happen, but try to minimize the 
consequences [more in future lecture on browsers!]



How can we find and/or prevent problems like this?

● Dynamic analysis: Run the program, watch what it does, and look for problematic 
behavior [more in next lecture!] 

● Static analysis: read the source code and try to spot the issues [more in next lecture!] 
● Write code differently: create habits and frameworks that make it harder to produce 

these kinds of mistakes [more throughout the class!] 
○ This is where Rust -- and thinking about the philosophy / design choices 

behind Rust -- comes in. 

○ Possibly makes programming harder? Need to re-train engineers? 


● Sandbox: accept that these issues will happen, but try to minimize the 
consequences [more in future lecture on browsers!] 
○ Equally important! 



About CS 110L 👋



Course outline

● Key question: How can we prevent common mistakes in systems 
programming?

● This is not a Rust class, although almost all of our programming will be 

done in Rust

● How do we find and prevent common mistakes in C/C++?

● How does Rust’s type system prevent common memory safety errors?

● How do you architect good code?

● Avoiding multiprocessing pitfalls

● Avoiding multithreading pitfalls

● Putting all of this into practice: Networked systems



Course outline

● Corequisite: CS 110

● Pass/fail


● You will get out what you put in

● Components:


● Lecture

● Weekly exercises (40%)

● Two projects (40%)

● Participation (20%)


■ Coming to & participating in lecture

■ Asking/answering questions on Slack



Missing classes

● Class is officially in-person (if we can do so in a safer way)

● Communicate with me! Email or Slack. 

● If we need a more rigorous hybrid option, I'll try to make one work

● We have recordings of lectures from previous quarters

● Happy to give extensions



Projects

● Project 1: Mini GDB

● Project 2: High-performance web server

● Functionality grading only


● The Rust compiler will be your interactive style grader!

● These projects are intended to give you additional experience in building real 

systems, while having to think about some of the safety issues we’re 
discussing. These may seem intimidating, but they really aren't!


● Working in groups is encouraged!

● Have a different idea? Let me know!



Exercises

● Each week (ish), there will be small programming problems to reinforce the 
week’s lecture material


● Expected time: 1-3 hours

● In addition, you’ll be asked occasionally to complete an anonymous survey 

about how the class is going and how we/I can improve



Work for Wednesday

Fill out this intro form: https://forms.gle/gjep8hA4J637amC5A 

Join the Slack (Canvas sidebar -> Slack -> Join. All communication will be there!) 


(Slides will be posted on website shortly after class.)

https://forms.gle/gjep8hA4J637amC5A

