
Garbage collection

CS110L

January 26, 2022

But wait… Why is this so much harder than it is in Python?

Garbage collection

Garbage collection

● C/C++ have a problem: When should you free your memory?

○ In complicated codebases, it’s very easy to have memory leaks, double frees, or use-

after-frees

● Rust: Use a fancy type system to denote who is responsible for freeing memory, and let the

compiler check that everything looks right

○ Still difficult to program.

○ You’re constantly thinking about who has ownership of what

● Much older approach: Garbage collection

○ When writing your program, don’t worry about freeing memory

○ When running your program, the runtime will observe when memory is no longer being

used, and will free it for you

○ Ex: you never have to manually manage your memory in (e.g.) Python!

Tracing garbage collection

main() stack frame
list:

Node
value: 1
next:

Node
value: 2
next:

Node
value: 3
next:

Node
value: 4
next:

Node
value: 5
next: Ø

Remove 2nd node

Tracing garbage collection

main() stack frame
list:

Node
value: 1
next:

Node
value: 2
next:

Node
value: 3
next:

Node
value: 4
next:

Node
value: 5
next: Ø

Remove last node

Tracing garbage collection

main() stack frame
list:

Node
value: 1
next:

Node
value: 2
next:

Node
value: 3
next:

Node
value: 4
next:

Node
value: 5
next: ØØ

‼ Pause execution, begin GC

visited: 0 visited: 0 visited: 0 visited: 0 visited: 0
👀

main() stack frame
list:

Node
value: 1
next:

Node
value: 2
next:

Node
value: 3
next:

Node
value: 4
next:

Node
value: 5
next:

Tracing garbage collection

ØØ
visited: 1 visited: 0 visited: 0 visited: 0 visited: 0

👀

‼ Pause execution, begin GC

main() stack frame
list:

Node
value: 1
next:

Node
value: 2
next:

Node
value: 3
next:

Node
value: 4
next:

Node
value: 5
next:

Tracing garbage collection

ØØ
visited: 1 visited: 0 visited: 1 visited: 0 visited: 0

👀

‼ Pause execution, begin GC

main() stack frame
list:

Node
value: 1
next:

Node
value: 2
next:

Node
value: 3
next:

Node
value: 4
next:

Node
value: 5
next:

Tracing garbage collection

ØØ
visited: 1 visited: 0 visited: 1 visited: 1 visited: 0

‼ Pause execution, begin GC

👀

Downsides of garbage collection

● Expensive

○ No matter what type of garbage collection is used, there will always be nontrivial

memory overhead

● Disruptive

○ Drop what you’re doing — it’s time for GC!

● Non-deterministic

○ When will the next GC pause be? Who knows! Depends on how much memory is
being used

● Precludes manual optimization

○ In some situations, you may want to structure your data in memory in a specific way in

order to achieve high cache performance

○ GC can’t know how you will use memory, so it optimizes for the average use case

GC is expensive
https://dl.acm.org/doi/10.1145/1103845.1094836

https://dl.acm.org/doi/10.1145/1103845.1094836

GC is expensive
https://dl.acm.org/doi/10.1145/1103845.1094836

With five times as much memory, an Appel-style generational collector with a non-
copying mature space matches the performance of reachability-based explicit memory
management. With only three times as much memory, the collector runs on average
17% slower than explicit memory management. However, with only twice as much
memory, garbage collection degrades performance by nearly 70%. When physical
memory is scarce, paging causes garbage collection to run an order of magnitude
slower than explicit memory management.

“Quantifying the performance of garbage collection vs. explicit memory management,”
Hertz and Berger

https://dl.acm.org/doi/10.1145/1103845.1094836

Note latency spikes every 2 minutes

LinkedIn Engineering:

“In our production environments, we have seen unexplainable large STW

pauses (> 5 seconds) in our mission-critical Java applications.”

https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic

https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic

Latency matters

● User interfaces

● Games

● Self-driving cars

● Payment processing

● High frequency trading

Takeaways

● Use GC languages when it makes sense, but know their limits

○ It doesn’t matter how much memory you save if it takes you so long to

develop your app that no one uses it

○ You can always rewrite certain components in other languages if efficiency

becomes a problem

○ Side note: GC languages can still lead to resource leaks — file descriptors,

database handles, race conditions in multithreaded code, etc.
● In resource-constrained or latency-sensitive environments, GC may not be a

viable option

Where is Rust used? One [not the only!] perspective…

● Memory safety: C and C++ generally suck when it comes to manual memory
management.

● GC generally sucks for resource (power, memory) consumption & latency.

● Rust is still doing manual memory management

○ The compiler does a lot of it for you

○ Rust’s type system is designed to help us communicate our expectations so

that the compiler can validate them

● For applications that need both memory safety AND resource efficiency/low latency,

you’ll notice people switching to Rust

○ Mozilla, Cloudflare, embedded operating systems, etc.

○ https://en.wikipedia.org/wiki/Rust_(programming_language)#Adoption

https://en.wikipedia.org/wiki/Rust_(programming_language)#Adoption

